List of articles reporting calculations with MOLGW

Do not hesitate to report your work to us.

  1. A. M. Valencia, C. Cocchi, J. Phys. Chem. C 123, 9617 (2019).
    Electronic and Optical Properties of Oligothiophene-F4TCNQ Charge-Transfer Complexes: The Role of Donor Conjugation Length
  2. M. Guerrini, C. Cocchi, A. Calzolari, D. Varsano, S. Corni, J. Phys. Chem. C 123, 6831 (2019).
    Interplay between Intra- and Intermolecular Charge Transfer in the Optical Excitations of J-Aggregates
  3. S. Refaely-Abramson , Z.-F. Liu , F. Bruneval, J. B. Neaton, J. Phys. Chem. C 123, 6379 (2019).
    First-Principles Approach to the Conductance of Covalently Bound Molecular Junctions
  4. F. Bruneval, Phys. Rev. B 99, 041118(R) (2019).
    Improved density matrices for accurate molecular ionization potentials
  5. M. Véril, P. Romaniello, J. A. Berger, P.-F. Loos, J. Chem. Theory Comput. 14, 5220 (2018).
    Unphysical Discontinuities in GW Methods
  6. I. Maliyov, J.-P. Crocombette, F. Bruneval, Eur. Phys. J. B 91, 172 (2018).
    Electronic stopping power from time-dependent density-functional theory in Gaussian basis
  7. V. Ziaei, T. Bredow, J. Phys. Condens. Matter 30, 395501 (2018).
    Screening mixing GW/Bethe-Salpeter approach for triplet states of organic molecules
  8. B. Shi, S. Weissman, F. Bruneval, L. Kronik, S. Öğüt, J. Chem. Phys. 149, 064306 (2018).
    Photoelectron spectra of copper oxide cluster anions from first principles methods
  9. G. Roma, F. Bruneval, L. Martin-Samos, J. Phys. Chem. B 122, 2023 (2018).
    Optical Properties of Saturated and Unsaturated Carbonyl Defects in Polyethylene
  10. V. Ziaei, T. Bredow, Phys. Rev. B 96, 195115 (2017).
    Simple many-body based screening mixing ansatz for improvement of GW/Bethe-Salpeter equation excitation energies of molecular systems
  11. E. Coccia, D. Varsano, L. Guidoni, J. Chem. Theory Comput. 13, 4357 (2017).
    Theoretical S1 ← S0 Absorption Energies of the Anionic Forms of Oxyluciferin by Variational Monte Carlo and Many-Body Green's Function Theory
  12. L. Hung, F. Bruneval, K. Baishya, S. Öğüt, J. Chem. Theory Comput. 13, 2135 (2017).
    Benchmarking the GW Approximation and Bethe-Salpeter Equation for Groups IB and IIB Atoms and Monoxides
  13. T. Rangel, S.M. Hamed, F. Bruneval, J.B. Neaton, J. Chem. Phys. 146, 194108 (2017).
    An assessment of the low-lying excitation energies and triplet instabilities of organic molecules with an ab initio Bethe-Salpeter equation approach
  14. V. Ziaei, T. Bredow, Chem. Phys. Chem. 18, 579 (2017).
    Large-scale quantum many-body perturbation on spin and charge separation in excited states of synthesized donor/acceptor hybrid PBI-macrocycle complex
  15. F. Bruneval, J. Chem. Phys. 145, 234110 (2016).
    Optimized virtual orbital subspace for faster GW calculations in localized basis
  16. V. Ziaei, T. Bredow, J. Chem. Phys. 145, 174305 (2016).
    GW-BSE approach on S1 vertical transition energy of large charge transfer compounds: A performance assessment
  17. V. Ziaei, T. Bredow, J. Chem. Phys. 145, 064508 (2016).
    Red and blue shift of liquid water's excited states: A many body perturbation study
  18. F. Bruneval, T. Rangel, S.M. Hamed, M. Shao, C. Yang, J.B. Neaton, Comput. Phys. Commun. 208, 149 (2016).
    MOLGW 1: many-body perturbation theory software for atoms, molecules, and clusters
  19. T. Rangel, S.M. Hamed, F. Bruneval, J.B. Neaton, J. Chem. Theory Comput. 12, 2834 (2016).
    Evaluating the GW approximation with CCSD(T) for charged excitations across the oligoacenes
  20. X. Blase, P. Boulanger, F. Bruneval, M. Fernandez-Serra, I. Duchemin, J. Chem. Phys. 144, 034109 (2016).
    GW and Bethe-Salpeter study of small water clusters
  21. F. Bruneval, S.M. Hamed, J.B. Neaton, J. Chem. Phys. 142, 244101 (2015).
    A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules
  22. M.P. Ljungberg, P. Koval, F. Ferrari, D. Foerster, D. Sànchez-Portal, Phys. Rev. B 92, 075422 (2015).
    Cubic-scaling iterative solution of the Bethe-Salpeter equation for finite systems
  23. P. Koval, D. Foerster, D. Sànchez-Portal, Phys. Rev. B 89, 155417 (2014).
    Fully self-consistent GW and quasiparticle self-consistent GW for molecules
  24. F. Bruneval, M.A.L. Marques, J. Chem. Theory Comput. 9, 324 (2013).
    Benchmarking the Starting Points of the GW Approximation for Molecules
  25. F. Bruneval, J. Chem. Phys. 136, 194107 (2012).
    Ionization energy of atoms obtained from GW self-energy or from random phase approximation total energies