List of articles reporting calculations with MOLGW

Do not hesitate to report your work to us.

  1. Y.-M. Byun, S. Öğüt, J. Chem. Phys. 151, 134305 (2019).
    Practical GW scheme for electronic structure of 3d-transition-metal monoxide anions: ScO, TiO, CuO, and ZnO
  2. P. Koval, M. P. Ljungberg, M. Müller, D. Sànchez-Portal, J. Chem. Theory Comput. 15, 4564 (2019).
    Toward Efficient GW Calculations Using Numerical Atomic Orbitals: Benchmarking and Application to Molecular Dynamics Simulations
  3. F. Bruneval, J. Chem. Theory Comput. 15, 4069 (2019).
    Assessment of the linearized GW density matrix for molecules
  4. M. Guerrini, A. Calzolari, D. Varsano, S. Corni, J. Chem. Theory Comput. 15, 3197 (2019).
    Quantifying the Plasmonic Character of Optical Excitations in a Molecular J-Aggregate
  5. A. M. Valencia, C. Cocchi, J. Phys. Chem. C 123, 9617 (2019).
    Electronic and Optical Properties of Oligothiophene-F4TCNQ Charge-Transfer Complexes: The Role of Donor Conjugation Length
  6. M. Guerrini, C. Cocchi, A. Calzolari, D. Varsano, S. Corni, J. Phys. Chem. C 123, 6831 (2019).
    Interplay between Intra- and Intermolecular Charge Transfer in the Optical Excitations of J-Aggregates
  7. S. Refaely-Abramson , Z.-F. Liu , F. Bruneval, J. B. Neaton, J. Phys. Chem. C 123, 6379 (2019).
    First-Principles Approach to the Conductance of Covalently Bound Molecular Junctions
  8. F. Bruneval, Phys. Rev. B 99, 041118(R) (2019).
    Improved density matrices for accurate molecular ionization potentials
  9. M. Véril, P. Romaniello, J. A. Berger, P.-F. Loos, J. Chem. Theory Comput. 14, 5220 (2018).
    Unphysical Discontinuities in GW Methods
  10. I. Maliyov, J.-P. Crocombette, F. Bruneval, Eur. Phys. J. B 91, 172 (2018).
    Electronic stopping power from time-dependent density-functional theory in Gaussian basis
  11. V. Ziaei, T. Bredow, J. Phys. Condens. Matter 30, 395501 (2018).
    Screening mixing GW/Bethe-Salpeter approach for triplet states of organic molecules
  12. B. Shi, S. Weissman, F. Bruneval, L. Kronik, S. Öğüt, J. Chem. Phys. 149, 064306 (2018).
    Photoelectron spectra of copper oxide cluster anions from first principles methods
  13. G. Roma, F. Bruneval, L. Martin-Samos, J. Phys. Chem. B 122, 2023 (2018).
    Optical Properties of Saturated and Unsaturated Carbonyl Defects in Polyethylene
  14. V. Ziaei, T. Bredow, Phys. Rev. B 96, 195115 (2017).
    Simple many-body based screening mixing ansatz for improvement of GW/Bethe-Salpeter equation excitation energies of molecular systems
  15. E. Coccia, D. Varsano, L. Guidoni, J. Chem. Theory Comput. 13, 4357 (2017).
    Theoretical S1 ← S0 Absorption Energies of the Anionic Forms of Oxyluciferin by Variational Monte Carlo and Many-Body Green's Function Theory
  16. L. Hung, F. Bruneval, K. Baishya, S. Öğüt, J. Chem. Theory Comput. 13, 2135 (2017).
    Benchmarking the GW Approximation and Bethe-Salpeter Equation for Groups IB and IIB Atoms and Monoxides
  17. T. Rangel, S.M. Hamed, F. Bruneval, J.B. Neaton, J. Chem. Phys. 146, 194108 (2017).
    An assessment of the low-lying excitation energies and triplet instabilities of organic molecules with an ab initio Bethe-Salpeter equation approach
  18. V. Ziaei, T. Bredow, Chem. Phys. Chem. 18, 579 (2017).
    Large-scale quantum many-body perturbation on spin and charge separation in excited states of synthesized donor/acceptor hybrid PBI-macrocycle complex
  19. F. Bruneval, J. Chem. Phys. 145, 234110 (2016).
    Optimized virtual orbital subspace for faster GW calculations in localized basis
  20. V. Ziaei, T. Bredow, J. Chem. Phys. 145, 174305 (2016).
    GW-BSE approach on S1 vertical transition energy of large charge transfer compounds: A performance assessment
  21. V. Ziaei, T. Bredow, J. Chem. Phys. 145, 064508 (2016).
    Red and blue shift of liquid water's excited states: A many body perturbation study
  22. F. Bruneval, T. Rangel, S.M. Hamed, M. Shao, C. Yang, J.B. Neaton, Comput. Phys. Commun. 208, 149 (2016).
    MOLGW 1: many-body perturbation theory software for atoms, molecules, and clusters
  23. T. Rangel, S.M. Hamed, F. Bruneval, J.B. Neaton, J. Chem. Theory Comput. 12, 2834 (2016).
    Evaluating the GW approximation with CCSD(T) for charged excitations across the oligoacenes
  24. X. Blase, P. Boulanger, F. Bruneval, M. Fernandez-Serra, I. Duchemin, J. Chem. Phys. 144, 034109 (2016).
    GW and Bethe-Salpeter study of small water clusters
  25. F. Bruneval, S.M. Hamed, J.B. Neaton, J. Chem. Phys. 142, 244101 (2015).
    A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules
  26. M.P. Ljungberg, P. Koval, F. Ferrari, D. Foerster, D. Sànchez-Portal, Phys. Rev. B 92, 075422 (2015).
    Cubic-scaling iterative solution of the Bethe-Salpeter equation for finite systems
  27. P. Koval, D. Foerster, D. Sànchez-Portal, Phys. Rev. B 89, 155417 (2014).
    Fully self-consistent GW and quasiparticle self-consistent GW for molecules
  28. F. Bruneval, M.A.L. Marques, J. Chem. Theory Comput. 9, 324 (2013).
    Benchmarking the Starting Points of the GW Approximation for Molecules
  29. F. Bruneval, J. Chem. Phys. 136, 194107 (2012).
    Ionization energy of atoms obtained from GW self-energy or from random phase approximation total energies