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Abstract

We summarize the moLgw code that implements density-functional theory and many-body perturbation theory in a
Gaussian basis set. The code is dedicated to the calculation of the many-body self-energy within the GW approxi-
mation and the solution of the Bethe-Salpeter equation. These two types of calculations allow the user to evaluate
physical quantities that can be compared to spectroscopic experiments. Quasiparticle energies, obtained through the
calculation of the GW self-energy, can be compared to photoemission or transport experiments, and neutral excitation
energies and oscillator strengths, obtained via solution of the Bethe-Salpeter equation, are measurable by optical ab-
sorption. The implementation choices outlined here have aimed at the accuracy and robustness of calculated quantities
with respect to measurements. Furthermore, the algorithms implemented in MmoLGw allow users to consider molecules
or clusters containing up to 100 atoms with rather accurate basis sets, and to choose whether or not to apply the
resolution-of-the-identity approximation. Finally, we demonstrate the parallelization efficacy of the MmoLGw code over
several hundreds of processors.
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PROGRAM SUMMARY
Program Title: MOLGW
Journal Reference:
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Licensing provisions: GPL v3.0 [1]
Programming language: Fortran 2003 with a few C subrou-
tines, Python scripts
Number of processors used: 1-1024
Keywords: Electronic structure of molecules; Many-body
perturbation theory; GW approximation; Bethe-Salpeter
equation
Classification:
External routines/libraries: LIBINT [2], LiBXC [3]
Nature of problem:
Prediction of the electronic structure of atoms, molecules,
clusters with a particular interest in their spectroscopic
features, such as quasiparticle energies and optical spectra.
Solution method:
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Using the GW approximation to many-body perturbation the-
ory, MOoLGW calculates total-energies, quasiparticle energies,
and optical excitations.

Running time:
From 30 seconds to a few hours

[1] http://www.gnu.org/copyleft/gpl.txt
[2] https://github.com/evaleev/libint
[3] http://www.tddft.org/programs/octopus/wiki/index.php/Libxc

1. General presentation

Over the years, many-body perturbation theory
(MBPT) [1, 2, 3] has been demonstrated to lead to
meaningful approximations for a variety of interesting
electronic properties, but especially for those that in-
volve excitations. Excited electronic states arise natu-
rally when one connects calculations to, for example,
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experimental measurements of photoemission, inverse-
photoemission, charge transport, or optical absorption.

In the field of theoretical chemistry, the celebrated
Moller-Plesset perturbation theory [4] is most com-
monly derived in increasing orders with respect to the
bare Coulomb interaction v. However, for bulk metal-
lic systems, the expansion with respect to v gives rise
to infinite terms, and is therefore inadequate. The use
of the screened Coulomb interaction W, instead of the
bare Coulomb interaction v, remedies this issue [2] and
consequently, a comprehensive perturbative approach
based on W can be derived [5]. Its first-order approx-
imation, namely the GW approximation, has been used
with great success for the last 30 years in extended sys-
tems to calculate the band gaps of solids [6, 7, 8, 9].
In the past, the application of the GW approximation
to finite systems was rather infrequent [10, 11, 12, 13].
But there has been much recent increase in interest
[14, 15, 16, 17, 18, 19, 20, 21, 22, 23] in the application
of the GW approximation to problems involving atoms,
molecules, and clusters, in part driven by the quest to
develop efficient techniques to address mixed systems
such as molecular junctions [24, 25, 26, 27, 28].

Several codes that implement MBPT in its GW ap-
proximation for periodic systems are well-established
and regularly utilized. To name a few of them, ABINIT
[29], yamBo [30], SaX [31], vasp [32], and BERKE-
LEYGW [33] produce GW quasiparticle energies and op-
tical spectra from the Bethe-Salpeter equation (BSE). A
few newer implementations have the advantage of a spe-
cific representation of W to target large but still periodic
systems [34, 35].

Implementations of the GW approximation of MBPT
for finite systems are much rarer, but their numbers
have increased during the last few years and include rG-
was [13], Fa1-AMs [36], FIESTA [15], TURBOMOL [37], and
MoLGw. While moLGgw has been employed in several pre-
vious studies [18, 23, 38, 39, 40], it has never been fully
described in a single text.

In this article, we present version 1 of the MmoLGw
code. This software is particularly dedicated to the
study of excited state properties of finite systems with
MBPT using a Gaussian basis. MoLGw is a self-
contained code that is able to perform both the start-
ing self-consistent field calculation in the generalized
Kohn-Sham (gKS) framework and the MBPT post-
treatment. The code can produce GW quasiparticle en-
ergies and optical spectra through solution of the BSE.

The article is organized as follows: in Section 2, we
quickly review the theoretical foundation of the GW ap-
proximation and of the BSE; in Section 3, we detail the
technical implementation; in Section 4, we describe the
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Figure 1: Typical workflow of perturbative GW and BSE calculations.

code organization; in Section 5, we present a few val-
idation studies; and in Section 6, we exhibit the paral-
lelization capabilities of MoLGW.

In this article, Hartree atomic units will be used in
all equations; wavefunctions will be considered real and
consequently all conjugations will be dropped; state in-
dexes m and n run over all states, empty and occupied;
indexes i and j are limited to occupied states; and in-
dexes a and b are limited to empty states.

2. Theoretical background

In most cases, an MBPT calculation is performed
as a post-processing step based on a previous self-
consistent gKS run, as shown in Fig. 1. The optimal
choice of gKS starting point, whether Hartree-Fock, a
semi-local approximation, or a hybrid functional within
density-functional theory (DFT), is not trivial for a
given system and is currently an active area of research
[41, 39, 42, 38, 43, 44]. In any case, the wavefunctions
and eigenvalues that result from the gKS calculation are
used to produce the screened Coulomb interaction W
which is an ingredient in both the GW approximation to
the self-energy and in the BSE. The GW self-energy is
meant to produce accurate quasiparticle energies "
that can be compared to photoemission and inverse-
photoemission spectroscopy, and these quasiparticle en-
ergies are in turn required input for the BSE solution.
Finally, the solution to the BSE yields neutral excita-
tion energies €, and oscillator strengths f that can be
compared to optical absorption experiments.

Bearing in mind the different stages of the MBPT cal-
culations, we are now prepared to introduce a few use-
ful physical quantities. We do not intend to review all of



the developments necessary for a complete derivation of
MBPT. Rather, we sketch a rapid overview of the min-
imal knowledge required for the implementation of the
GW approximation to the self-energy and for the BSE
solution. For a more complete understanding, we refer
the reader to the review articles of Strinati [45], Aryase-
tiawan and Gunnarsson [8], and Onida et al. [46].

2.1. GW self-energy

The time-ordered Green’s function is the central ob-
ject in MBPT. It is a compact representation of addi-
tional electrons (for positive times) or missing electrons
(for negative times) in the system.

In the specific case of electrons in a mean-field po-
tential, which can be described with one-electron wave-
functions ¢, (r) and one-electron energies ¢, the one-
particle Green’s function reduces to

Cr ) = Z (D)7 (1)
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where the index i runs over the occupied one-electron
states, the index a runs over the empty one-electron
states, o is the spin channel, and 7 is a small positive
real number.

With this Green’s function, one can build the non-
interacting polarization yy,

Z @5 () (')

w—€J +in’

. (D)

4 1 o 4 ’
XO(r,r,w:—g; f dw G (r,1', w+w))GT (X, 1, w)),

(@)
and the dielectric function & within the random-phase
approximation (RPA)
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The screened Coulomb interaction W is then obtained
as

W, r',w) = fdr]sfl(r,rl,w)v(rl -r). @

The GW approximation is the first-order expansion of
the self-energy in W. It reads
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where the factor ¢! enforces the correct time-ordered
form of the self-energy.

The GW self-energy is most commonly evaluated
within a perturbative approach, called GoWj or alterna-
tively “one-shot GW”. In such a case, the GW quasipar-
ticle energies €W are obtained through

€V = €7 + (@TIZ7 (€M) — vielp?). (©6)

Note that the self-energy is evaluated at the quasiparticle
energy €W, therefore Eq. (6) must be solved numeri-
cally.

Some authors [42, 43, 47] advocate for iterating fur-
ther the GW equations by updating the eigenvalues in
Eq. (1) to those from Eq. (6), while keeping the wave-
function fixed to the mean-field result. This procedure,
usually called “evGW”, appears as simple and robust.

Alternatively, Faleev er al. [48, 49, 50] proposed
that the Hermitian part of a static approximation to the
GW self-energy be retained to produce new orthogonal
wavefunctions that could be iterated as well. This ap-
proach is referred to as “QSGW” for quasiparticle self-
consistent GW.

Nowadays, some groups [51, 14, 21] are exploring
the possibility of fully self-consistent GW calculations.
As MoLgw does not have this capability, we will not
mention this any further.

2.2. Bethe-Salpeter equation

The BSE is an equation for a contraction of the two-
particle Green’s function L that permits the calculation
of polarizabilities that readily include the electron-hole
interaction.

The BSE is usually assuming a static approximation
of the GW self-energy, which simplifies the equation
nto
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where L, stands for the non-interacting counterpart of
L’
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The electron-hole interaction arises from the statically
screened Coulomb interaction W(r;,rs, w = 0), which
is often named the BSE kernel =

A contraction of the indexes of Ly gives back
the usual non-interacting polarizability introduced in

Eq. (2):

Xo(r,r2,w) = —iZng(l‘l,l’z;l‘l,l‘z;w)- (&)
(o



The fully interacting polarizability is obtained with the
same index contraction:

X, 0) = =i ) L7, e rn0). (10)
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3. Technical implementation

In this section, we will describe how the general
equations shown in the previous section translate when
a finite basis set is introduced. The equations derived
here closely match the notation and the forms used in
the practical implementation of MoLGw and its source
code.

3.1. Gaussian basis sets

In moLGw, one-electron wavefunctions are expanded
as linear combinations of atom-centered orbitals ¢,

I ) = Craum). (11)
M

For numerical ease, the radial components of the
atom-centered orbitals are chosen to be linear combi-
nations of Gaussian orbitals or “contracted Gaussians”
[3]. The angular component can be either “Cartesian”

Gu(0) = X"y Y cpe " (12)
b
or “Pure”
Bu(r) = V(B )" cpe”, (13)
b

where VY,,(f) are the real spherical harmonics. The
choice of the angular part type or of the coefficients
is dictated by the basis set selection. The transforma-
tions from Cartesian to pure are tabulated, for instance,
in Ref. [52].

3.2. Self-consistent field

In practice, the GW self-energy and the BSE so-
lution require the knowledge of a mean-field starting
point. With a gKS approach to obtain one-electron
wavefunctions and energies, MOLGW solves the Roothan-
Hall equation for spin restricted calculations and the
Pople-Nesbet equations for those that are spin unre-
stricted [3]. This framework encompasses Hartree-Fock
and semi-local approximations to DFT, as well as the
hybrid functionals and range-separated hybrids.

The Roothan-Hall and Pople-Nesbet equations re-
quire a self-consistent solution to calculate the wave-
function coefficients C” introduced in Eq. (11) and the
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Figure 2: Exact-exchange fraction of a range-separated hybrid func-
tional as a function of interelectron separation. The solid line repre-
sents the fraction of exact-exchange energy over the total (DFT and
exact) exchange energy. The shaded areas show how the exchange is
taken into account in the calculations at a given interelectron distance.
Here we consider a range-separated hybrid functional with @ = 0.25
and 8 = 0.50 as an example.

one-electron energies €” (which are subsequently stored
in a diagonal matrix). These equations comprise the
generalized diagonalization problem

HC” = SC7¢, (14)

where S is the basis function overlap matrix,

Suv = fdr¢”(l')¢y(r), (15)
and HY is the spin-dependent hamiltonian,

H'Z_v = T,uv + Vext w T Jpv
—aKy, = BKy + (Vi)u. (16)

We show in Fig. 2 how the different components of
the exchange are taken into account within the range-
separated hybrid family of functionals, either calculated
with the Fock exchange or with a DFT semi-local func-
tional. The y parameter (an inverse length) governs the
crossover between short and long range. The value of
the o parameter is a measure of the amount of Fock
exact-exchange. In Fig. 2, this fraction of the exchange
is present at all ranges and it is graphically represented
by the lower gray area. The § parameter dictates the
proportion of long-range Fock exchange. In Fig. 2, be-
cause of positive 3, the amount of exact-exchange in-
creases with interelectron distance. It is graphically rep-
resented by the central blue area. The DFT semi-local
exchange contribution complements the Fock exchange



so that a full account of the exchange is recovered at
any interelectron separation. Therefore, the amount of
DFT semi-local exchange decreases with interelectron
distance for positive 8. The DFT exchange contribu-
tion consists of two parts: a standard exchange part,
which is constant for any distance and which is rep-
resented by the upper red area in Fig. 2; and a short-
range part, which precisely complements the long-range
exact-exchange Fock contribution. This latter contribu-
tion is proportional to 8 and is represented by the central
green area in Fig. 2. Note that the standard DFT ex-
change is introduced proportional to 1 —a — so that the
exchange is fully accounted for irrespective of range.
Finally, it should be stressed that the DFT exchange-
correlation potential V,. is a function of @, 3, and v,
even though it is not explicitly noted.

Functionals with no range separation, such as B3LYP
[53] or PBEO [54], can be obtained by setting 5 or y to
0. The functionals with the correct asymptotics [55] en-
force @ + § = 1. The short-range only functionals, such
as HSEQ6 [56, 57], use 8 = —a. With this framework,
we have then the full flexibility to account for most cur-
rent hybrid functionals on the market.

Let us detail now the terms in the Hamiltonian in
Eq. (16). It consists of a kinetic energy term

T =—% f dr lim ¢,(OVE4, (), (17)

an external potential energy term
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where Z, and R, are the charge and the position of the
nuclei, and electron-electron interaction terms.

First, the Hartree term accounts for the classical
electron-electron repulsion. It reads

Ty = Z(yvur) Z Ps, (19)

where the density matrix P is introduced as

= D ICnCy, (20)

n

with f7 the occupation number, as well as the electron
repulsion integrals in Mulliken notation:

(uvlAr) = f f drdr’ Gu(O)py(r)— ¢A(l’ ) (x').

ey

In order to account for hybrid functionals (and range-
separated hybrids), we have explicitly written the all-
range exchange matrix, rescaled with a factor @ in
Eq. (16),

KZ, = " PL(udlr) (22)
At
and the long-range only exchange matrix, rescaled with
a factor 8 in Eq. (16),

Ky = ZP (uAlTv), (23)

where the long-range electron repulsion integrals are de-
fined as

(e = f f drdr’ 0,0 LD

1] PP (r").

(24)

In practice, the electron repulsion integrals are eval-

uated using recursion formulas [58] as implemented in

the LBINT library [59]. The range-separated integrals are

obtained simply by changing the initial term of the re-
cursion [56].

A priori integral screening with the Schwarz inequal-

ity
(uvlAT) < A/ (uvlpy) v/(At|AT) 25)

can drastically reduce the number of 4-center integrals
to be calculated [60], and we make use of this here.

The density-functional exchange-correlation poten-
tial V.. is then evaluated with the expression [61]

Vi = (@elo”(0), Vep” @10 (26)
a XC
= f dr{%mr)mr)
O0€y, T
[ 5V pl(r) + 25 5y Ve (r)]
vrwﬂ(r)cpy(rn} , @7

where €, is the exchange-correlation energy density
(per unit volume), and where

Yoo = Vep (1) - Vep? (V). (28)

The corresponding expression for Vi is analogous. In
MOLGW, the values of €,. and its derivatives are obtained
from the external library LiBxc [62] .

The density and the density gradient are obtained
from the density matrix as

PIE) = ) PLAumgr) (29)
ny

Vp7(r)

Z P Velgu(r)gy(r)]. (30)
My



As is standard in quantum chemistry, the integration
in Eq. (27) for the evaluation of the matrix elements
(V2 )uv is performed by numerical quadrature. First,
the space is partitioned in smooth regions around each
atom using Becke [63] or SSF schemes [64]. Then, each
atom carries its own quadrature points in spherical co-
ordinates combining an angular Lebedev-Laikov mesh
[65] and a radial mesh [66].

Finally, the Roothan-Hall or Pople-Nesbet equations
should be solved self-consistently because of the depen-
dence of the terms J, K, K?, V. on the density matrix.
The method due to Pulay, extremely efficient [67, 68]
and rather robust, is used here.

3.3. Auxiliary basis set

In order to reduce the computational and the memory
costs associated with the 4-center integrals (uv|AT), the
introduction of an auxiliary basis set to represent the or-
bital products ¢, (r)¢,(r) has been proposed [69, 70, 71].
This method, known as the resolution-of-the-identity
method, allows one to approximate the 4-center inte-
grals in terms of 2- and 3-center integrals, as

@an) ~ Y @P)PIOY (@) (31)
PQ
where the 3-center integrals read

1
(WP) = f drdr’' g, (06, (0)—— ¢p(t')  (32)
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and the 2-center integrals are

1
(PIO) = f drdr' $p(t)——go(c).  (33)

r —r'|
The index running over the auxiliary basis are labeled
with capital letters P, Q, etc.

The quality of the approximation in Eq. (31) depends
on the quality of the auxiliary basis set. The basis sets
proposed by Weigend [71] permits an accurate expan-
sion of the orbital products that are used in both the
Hartree term J and in the Fock exchange term K. This
method is called “RI-JK”.

In practice, the 2-center integral matrix (P|Q) is pos-
itive definite and its square-root can be calculated so as
to transform Eq. (31) into

(uilAn) = > Mf MY, (34)
P

where

Mh, = (wioxQIP) ™, (35)
o

This is computationally simpler to evaluate (N opera-
tions instead of N?).

In MoLGw, one can choose whether or not to evalu-
ate the Hartree term J and the Fock term K with the
resolution-of-the-identity (RI) approximation.

3.4. Polarizability in the state product basis

Both the GW calculations and the BSE require the
calculation of the polarizability. In standard GW calcu-
lations, it is obtained within the random phase approxi-
mation (RPA), whereas in the BSE, one needs to intro-
duce the additional kernel = described in Section 2.2. In
MoLGW, whatever the approximation, the calculation of
the polarizability follows the same procedure. The ad-
vantage of this is that the spectral decomposition of the
polarizability may be obtained so that its evaluation at
any frequency is exact and, as a consequence, the GW
self-energy convolution can be calculated analytically.

The BSE equation in Eq. (7) can be written in
terms of a product basis of occupied to unoccupied
states (and the converse). This transformation is pre-
cisely the same one frequently used to represent time-
dependent Hartree-Fock (TD-HF) and time-dependent
density-functional theory (TD-DFT) within linear re-
sponse [72, 73, 74]. Due to the symmetry between res-
onant (occupied to empty) and anti-resonant (empty to
occupied) transitions, these equations have a very spe-
cific block form:

A B X X*
EEEIREa

where €, are the neutral excitation energies and (X°, Y*)
are the corresponding eigenvectors.

The only difference between RPA, TD-HF, TD-DFT
and BSE lies in the specific expression of the matrix
elements in A and B. Let i and j indexes stand for oc-
cupied states and a and b for unoccupied states. The
expressions for these elements read

AZJ(ZZ = (& —€)0ij0wbo0
+(iac|jbo’) + = (37a)

ibo”’ . . —bjo’
B” = (iaolbjo’) + &, (37b)

where the operator = stands for the kernel of the selected
approximation. In the specific case of RPA, = = 0. The
expression of = in BSE will be addressed further below.

The molecular orbital electron repulsion integrals are
defined as

1
Ir—r'|
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and are obtained by the canonical transform

(iac|jbo’) = Z CrCye C‘}]C‘Trb(yvl/l‘r). (39)
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When the resolution-of-the-identity approximation is
used, the scaling of the transform above can be im-
proved:

(iac| jbo’) ~ Z [Z co.co,mp, )
P\ pv

X (Z c;’l’.c;;;Mf,]. (40)
At

Due to the peculiar block structure of Eq. (36), which
induces many symmetries, it can be recast into a smaller
matrix diagonalization, after some algebra [73]:

CZ*' =7°Q?, (41)

where C = (A — B)'>(A + B)(A — B)"/? is a symmet-
ric matrix that is half the size of the initial problem in
Eq. (36). The above expression assumes matrix (A — B)
to be positive definite. From the knowledge of an eigen-
vector Z*, one can recover both X* and Y* as

1

X5 = E [Q;l/Z(A _ B)1/2 + Qi/Z(A _ B)—I/Z] 75 (423)
1

v =R - B - A - By 2. (42b)

The equations for X* and Y* imply normalization con-
ditions that can be recast into a matrix form:

x -v\'(x v
(e N A R
where the left-hand matrix contains the left eigenvec-
tors and the right-hand matrix contains the right eigen-
vectors of Eq. (36). A more efficient way of solv-
ing Eq. (36) that avoids the computation of the matrix
square-root will be discussed in Section 6.2.

Once the eigenvalues Q; and the eigenvectors (X*, Y¥)
have been obtained through the diagonalization of
Eq. (41) and the matrix multiplications in Egs. (42a-
42b), the spectral representation of the polarizability
follows thanks to Eq. (10). Then, using the definition
of the screened Coulomb interaction in Eq. (4), W reads

Wi (@) = (mnarlopo’) + Z Wi Woper

1 1
x( —_ ) (44)
w-Q;+in w+Q;—1in

where the residues w;,, . are defined as

Wong = D (mn0rliac )Xy + Yo (45)

iao’

Note that once again the resonant/antiresonant symme-
try has been used in Eq. (44) to produce a more compact
expression.

3.5. Many-body total energies

The GW approximation has been mentioned so far
with the aim of obtaining self- and quasiparticle ener-
gies, but it can also be used to calculate total energies
[5,75,12,21].

There are several expressions for the GW total en-
ergy that all match for a self-consistent solution of the
Green’s function G. However, they differ when evalu-
ated with a perturbative G obtained from a gKS starting
point [12, 76]. One of these expressions, the Klein func-
tional [77], is particularly interesting, since it yields a
stationary expression for the total energy and it matches
the RPA total energy obtained in the DFT framework
[78, 79, 80].

In practice, when calculating the Klein functional
from a gKS potential, Furche [81] proposed a very com-
pact formula that avoids the numerical integration over
the coupling constant and over frequencies. The expres-
sion only involves the results already calculated for the
polarizability anyway:

EfPA ZQ + 226 — € — (iacliac). (46)

aoc

This last equation is nothing more than the difference
between the eigenvalues and the diagonal terms of
Eq. (36).

3.6. GW self-energy

With the spectral decomposition of W at hand, and
using the residue theorem, it is possible to give an an-
alytical expression for the GW self-energy convolution
in Eq. (5).

The first term on the right-hand side of Eq. (44) gives
the usual Fock exchange term. The rest yields the corre-
lation part of the self-energy X., whose diagonal matrix
elements read

ws. wl.
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Figure 3: Graphical solution of the quasiparticle equation for at Hp
molecule in the minimal basis (STO-3G) for the LUMO state (upper
panel) and the HOMO state (lower panel). The quasiparticle energy
is defined at the intersection between the correlation part of the self-
energy (solid blue line) and of the line w — € + vy — X, (dashed red
line).

where we use again the convention that index a runs
over empty states and i runs over occupied states.

Hedin’s static approximation to GW, named
“Coulomb-hole plus screened exchange” (COHSEX)
[5, 82], can be derived from Eq. (47) by considering the
limit of Q; > |w — €

(@rIEdles) = ZZ iz Vel (g

The first term in Eq. (48) is the pure screened part of
the screened exchange, whereas the second one is the
Coulomb hole.

As an example, Fig. 3 shows the solution of the
quasiparticle equation in Eq. (6) for the H, molecule
within GW based on a Hartree-Fock starting point
(GoWy@HF) using the minimal STO-3G basis. In a
minimal basis, H, has two states: the highest-occupied
molecular orbital (HOMO) and the lowest-unoccupied
molecular orbital (LUMO). As a consequence, there
is only one pair of neutral excitation energies at +€;
and hence, the GW self-energy only shows two poles at
enomo — € and at e ymo + € as inferred from Eq. (47).
When the poles of the self-energy are distant from the
quasiparticle energies, a linearization of the self-energy
can be carried out. MmoLGw performs both the linearized
and the graphical solution to the quasiparticle equation.

3.7. BSE optical excitations

The BSE is a particular case of the polarizability
equation written in Egs. (36, 37a, 37b). In the standard
static BSE [83, 84, 85, 86, 46], the one-particle ener-
gies are the GW quasiparticle energies and the kernel =
reduces to

—Jjbo’ bo

Siar = 6(7'0'/“]110' (w=0), 49)
where W(w = 0) is the RPA screened Coulomb interac-
tion evaluated at w = 0.

Once the spectral decomposition of W has been cal-
culated for the GW self-energy, it can be reused for the

BSE kernel E. In practice, Z is obtained by introducing
Eq. (44) into Eq. (49):

B = 6,0 |(ijorlabo) - 22 ”” Yur | (s0)

Once the BSE is solved, we can connect the results of
the calculations to experiment, either by directly com-
paring the neutral excitations energies € or by eval-
uating the optical spectra. For instance, the photo-
absorption cross section tensor o (w) can be calcu-
lated [73] as

4nwsz

Ow(w) =

1 1
X — - —1, (5D
w—-Qs+in w+Q;+1in

with the oscillator strength f; obtained as

Y= D iolHac) (X + V). (52)

iao

The symbol X is the position operator along the x direc-
tion in space.

The oscillator strengths should add up to the number
of electrons in the system N,; according to the Thomas-
Reiche-Kuhne sum rule [73]

2 Y e = N (53)

However this relation is fulfilled only in the limit of a
complete basis set.

Finally, we would like to mention that the so-called
Tamm-Dancoff approximation can be used within BSE.
This approximation consists in setting the B block to
zero in Eq. (36). The BSE for a spin-triplet final state
can be evaluated as shown, for instance in Ref. [38].



4. Code description

MoLGW is being developed mainly in the Fortran 2003
language. In general, MoLGwW prioritizes simplicity of
implementation to facilitate new developments. As a
consequence, symmetry operations are not used. All the
Coulomb integrals are calculated once and then stored
in memory (a so-called in-core algorithm). MOLGW’s
reliance on several external libraries eases the code’s
maintenance. 2-, 3-, and 4-center Coulomb integrals
are all obtained from the library LiBINT [59], while the
exchange-correlation energy density, potential, and ker-
nel are calculated with the library LiBxc [62]. MOLGW is
parallelized using Message Passing Interface (MPI) for
the communications and ScaLAPACK for the linear al-
gebra.

The accuracy of morLgw for the self-consistent field
has been tested against existing quantum chemistry
codes with total energies and one-electron energies that
agree within 107® Ha. Recently, we have also tested the
accuracy against the FiEsTA code for the GW quasiparti-
cle energies [87]. The agreement is better than 1 meV.

Regression tests are present that certify about 150
critical check points using 30 different input files.

Many basis sets are available with moLcw. However,
new ones can be obtained, for instance from the EMSL
basis set exchange website [88, 89, 90]. A script is avail-
able in MoLGgw that transforms the basis sets in NWCHEM
[91] format into the internal format of MoLGw.

5. Accuracy tests

5.1. Auxiliary basis set convergence

Whereas the RI approximation has been assessed for
MP2 calculations [93], its quality for GW calculations is
still rather unclear. While the RI for GW has been used
by several groups [94, 15, 41], moLgw offers a unique
opportunity to test this approximation precisely, since it
is capable of turning it on or off.

As the GW calculations without RI quickly become
unfeasible, we have tested the approximation on a small
molecule, namely silane SiHy. Silane is a relevant test
example since the natures of the HOMO and LUMO dif-
fer significantly: the LUMO is unbound. In Table 1, we
provide the results for the Dunning family of basis sets
with and without diffuse functions [95, 96] in conjunc-
tion with the auxiliary basis set developed by Weigend
and coworkers [92]. The error induced by the RI ap-
proximation appears as insensitive to the state nature
(bound or unbound) as to the presence of diffuse func-
tion (augmented or not). The error is at most 11 meV,

| | | !
cc-pvVDZ cc-pVTZ cc-pvQz cc-pVsZ

Figure 4: Basis set convergence of the LUMO energy of tetracya-
noethylene (TCNE) with the Dunning basis sets without diffuse func-
tions (blue squares) or with diffuse functions (red circles). The con-
tinuous curves are a fit to the calculated data with the function given
in Eq. (54).

which is excellent compared to the other sources of er-
ror, such as the wavefunction basis set. We note that the
RI error seems to decrease when going to more com-
plete basis sets.

In our experience, the accuracy of the RI approxima-
tion shown here is typical of other small molecules. We
conclude that the RI approximation can be safely used
for production. It is used in all further shown calcula-
tions.

5.2. Basis set convergence

In several previous works [18, 39], we have already
illustrated slow convergence of the GW quasiparticle
energies as a function of the basis set. We have shown
that the slow convergence is not unexpected for a corre-
lated method and the GW convergence rate is not very
different between MP2 and the coupled-cluster method
CCSD(T).

Figure 4 shows a typical example of convergence for
the famous-as-an-electron-acceptor tetracyanoethylene
molecule (TCNE). We use the Dunning basis set fami-
lies (cc-pVnZ and aug-cc-pVnZ) [95, 96] that are pre-
cisely designed to smoothly reach the complete basis
set. The convergence is indeed smooth, but very slow.
We propose an extrapolating function with 2 parame-
ters a, €, for the quasiparticle energy as a function of

m
the basis set,

Em(lmax) = E;lo + 2L7 (54)

max



Table 1: HOMO and LUMO quasiparticle energy within GW @PBEQ for silane SiH, for different Dunning basis sets using or not the RI approxi-
mation in eV. The difference is given in meV. We use here the auxiliary basis sets developed Weigend [92].

cc-pVDZ  cc-pVTZ  cc-pVQZ
HOMO noRI(eV) -12.3566 -12.6027 -12.6879
RI(eV) -12.3553 -12.6012 -12.6871
Diff. (meV) 1.3 1.5 0.8
LUMO noRI(eV)  3.9687 3.2614 2.6863
RI(eV)  3.9800 3.2578 2.6864
Diff. (meV) 11.3 -3.6 0.0

aug-cc-pVDZ  aug-cc-pVTZ  aug-cc-pVQZ
-12.3426 -12.6018 -12.6958
-12.3407 -12.6002 -12.6952
1.9 1.6 0.6
0.9958 0.8431 0.7516
0.9999 0.8420 0.7516
4.1 -1.1 -0.1

where [, is the highest angular momentum in the basis
set (cc-pVDZ has [nax = 2, cc-pVTZ has L = 3, etc.).
The form of the extrapolating function has been empir-
ically selected. The squared exponent in the denomina-
tor yields the best match with the explicitly-calculated
points. Note that Truhlar [97] obtained a rather close
exponent of 2.2 for the MP2 correlation energies. With
this function, we have obtained the complete basis set
value and hence we can define the basis set error. The
error is as large as 1.1 eV for cc-pVDZ and even the
most complete basis set available, i.e. aug-cc-pV5Z,
still experiences a 0.15 eV deviation.

From all the examples we have calculated so far, the
convergence of the quasiparticle energies as a function
of the basis set size is always from above. As the conver-
gence is indeed very slow, we advocate for the system-
atic use of an extrapolation technique when comparison
to experiment is made.

We also provide the example of the convergence of
an optical spectrum in Fig. 5. It shows the photoabsorp-
tion cross section of pyrene, CgHo, for different ba-
sis sets with and without diffuse functions. The whole
calculation workflow (PBEO, then GW, then BSE) uses
the same basis set. In contrast with the previous state-
ment for GW, here the optical excitations converge
smoothly with the basis set, especially for augmented
basis sets. This demonstrates that the slow convergence
of the quasiparticle energies observed above compen-
sates, so that their differences converge more quickly.
For instance, the first bright excitation at 3.42 eV is eval-
uated with an accuracy of 50 meV already with the aug-
cc-pDZ basis. Just the higher energy lineshape around
7-9 eV seems to be more sensitive to the basis set.

In conclusion, the convergence of the optical spec-
trum can in cases be achieved with unconverged abso-
lute quasiparticle energies.
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in the calculatation of the RPA polarizability.

5.3. Single Pole Approximation

The strategy retained to evaluate the polarizability in
MOLGW possesses the unique feature of being exact in
the chosen basis set. Its drawback is that it scales poorly
with system size. Indeed, the transition space is spanned
by the product of orbitals |iac), where i is occupied and
a is empty. This space scales as N2, if N is a measure of
the system size (for instance the number of electrons).
Then the matrix C to be diagonalized in Eq. (41) oc-
cupies memory as N* and the diagonalization time it-
self scales as N®. For large systems this can indeed be
problematic. Consider buckminster fullerene Cg in the
cc-pVTZ basis set. There are 1800 basis functions and,
among them, 120 constitute the occupied states (con-
sidering that the C 1s are frozen). The C matrix is then
a 194400x194400 real symmetric matrix that requires
281 Tb of storage. It is then necessary to have a pro-
cedure to reduce the size of the matrix while keeping
reasonable accuracy.

A simple truncation of the number of empty states
in the state product basis |iac) is not much help. We
exemplify this statement with the convergence behav-
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ior of the HOMO and LUMO GW @PBEO quasiparticle
energies as shown in Fig. 6. When the product basis
is limited to the empty states below a given state in-
dex Ntates, both the HOMO and LUMO converge very
slowly to the value when all the empty states are in-
cluded (Ngpees = 1800). Nypues = 300 yields quasiparti-
cle energies that deviate by 0.7 eV from the converged
values within this basis set.

In the recent past, several techniques have been de-
signed to account for the states that are neglected in the
context of plane-wave approaches [13, 98, 99]. We pro-
pose to introduce the single pole approximation (SPA)
[73] for the high energy states to reduce the C matrix
dimension. In this approximation, the RPA matrix ele-
ments when a > Ngyees are considered diagonal:

A{ff: ~  6ij0upboo [6;’ —€ + (iao-liao-')] aspa
(55a)
IR §iSaOag (iaclaic Jasp. (55b)

Thus, the C matrix has a dense square block up to a =
Nistates and is diagonal above. Then, the diagonalization
needs only to be done for the dense block.

The performance of this procedure is shown with the
green line in Fig. 6. The approximation clearly over-
shoots the targeted value for both the HOMO and the
LUMO. As a consequence, we propose that the diagonal
terms above N be multiplied by an empirical param-
eter aspa = 1.5. This empirical factor does not contain
much physical meaning and it is just meant to reduce
the overshooting of the SPA. However, it yields a sub-
stantial accuracy gain in the case of the Cgy molecule,
as can be observed from the red line in Fig. 6. Now an
accuracy of 0.05 eV can be reached for both the HOMO
and the LUMO with Ng,es = 600, therefore reducing
the matrix dimension by a factor of 4 and hence divid-
ing the computational time by 64! This parameter aspa
is meant to be tuned, however the values ranging from
1.0 to 1.5 are quite reasonable across all the molecules
we have calculated so far.

The use of the SPA allows one to significantly re-
duce computational time and memory consumption by
changing the scaling prefactor, however keeping an
overall N® scaling.

6. Performance and parallelization

To access the GW quasiparticle energies and the BSE
optical spectra of larger molecules, the parallelization
of the code becomes unavoidable. Since the medium to
large molecules can be calculated within a reasonable
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Figure 7: Parallelization performance of the gKS part of moLcw for
the B-Caroten molecule C4oHsg within the rather complete basis set
cc-pVTZ. The upper panel represents the computational time speed-
up as a function of the number of cores. The reference for speed-up is
taken for 16 cores. The lower panel shows the memory consumption
per core. The actual results (blue circles) are compared to the ideal
parallelization (black line).

time only when the RI approximation is used, the paral-
lelization effort has been focusing on the RI calculations
in MmoLGw. Two types of operations benefit from the par-
allelization: the construction of the operators, such as
the Hamiltonian in Eq. (16) or the polarizability matri-
ces A and B in Egs. (37a), (37b), and the large eigen-
value problem described in Eq. (36).

6.1. Parallelization for the construction of the opera-
tors

As the parallelization is only meant to be used in con-
junction with the RI approximation, the parallelization
of the data and of the computation tasks most often re-
lies on the distribution over the auxiliary basis functions
P. This choice is validated by the observation that the
number of basis functions P in the auxiliary basis is in
general much larger than the number of functions in the
wave function basis p. Furthermore, distributing over
the auxiliary basis functions allows us to calculate many
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operators with only a few changes from the serial ver-
sion of the code.

Let us exemplify the parallelization with the calcu-
lation of the exchange operator K. The auxiliary basis
functions P are divided among the processors. Except
for a subset of P, each processor owns in memory the
3-center Coulomb integral M ;; for all i and v. Upon in-
troduction of the RI approximation [See Eq. (31)], and
the square root of the density matrix Pj,, Eq. (22) can
be cast into

K= [Z M&Pij/z] (Z Mv’;PZK‘/Z], (56)
P« A T

where « only runs over the non-vanishing eigenvalues
of P, i.e. the occupied states. As can be observed from
Eq. (56), the sum over P is only performed at the end
of the calculation of ng- Therefore, each processor
can calculate its workload independently and only at the
end, an overall reduction is carried out.

Another example is that of the well-known atomic or-
bital to molecular orbital transforms that are necessary
to evaluate the integrals (iao|jbo”’) in Egs. (37a), (37b).
In this case, the parallelization is completely indepen-
dent. Each processor performs the transforms

Mh,, = > co,comh, 57)
nv
for its subset of auxiliary basis functions P. Then the
integrals (iac|jbo’) are calculated following the same
spirit as in Eq. (56).

In Fig. 7, we show the performance of the paralleliza-
tion of MmoLGw for the gKS part for a medium molecule
with almost 100 atoms, namely S-Carotene Cy4oHse. S3-
Carotene using the cc-pVTZ basis set has 1984 basis
functions. The corresponding auxiliary basis has 4920
functions. The speed-up has been calculated with re-
spect to the smallest core number that fits in memory,
i.e. 16 cores. The scaling of the computational time
is rather good as long as the number of auxiliary ba-
sis functions per core is not too low, as demonstrated in
the upper panel of Fig. 7. A lower limit of 30-50 aux-
iliary basis functions per core is reasonable. It should
be stressed that anyway, the computational time is not
large: even with just 16 cores, the calculation lasts only
roughly 3 hours.

Concerning the memory consumption shown in the
lower panel of Fig. 7, the parallelization of the data is
efficient. This is not surprizing since, for the in-core al-
gorithm used in MoLGw, most of the memory is used to
store the 3-center Coulomb integrals M}, that are per-
fectly distributed among the cores.



In general, the bottleneck of the calculation is not the
gKS step. Rather, it is the calculation of the polarizabil-
ity, either to prepare the GW self-energy evaluation or
to evaluate the optical spectrum within BSE.

6.2. Diagonalizing the BSE Hamiltonian in parallel

Within the semi-local approximations to TD-DFT
and within RPA, the matrix (A — B) entering the expres-
sion of C in Eq. (41) is purely diagonal and therefore its
square-root can straightforwardly be calculated.

On the contrary, for hybrid functionals or for BSE,
the matrix (A — B) is dense and the direct application of
Eq. (41) would require two diagonalizations. To avoid
this, we use the Cholesky decomposition to replace the
matrix square root. Our approach is summarized as fol-
lows [100]:

1. Compute the Cholesky factorization A + B = LLT .
2. Form W = LT(A - B)L.

3. Diagonalize W = ZQZT .

4. Set X = (LTzQ'? + LZQ'?))2.

5. SetY = (LTzQ!'? — LZQ?) /2.

All of these steps make use of existing functionalities
from the ScaLAPACK software package [101]. The
eigenvectors are normalized as X’X — YTY = [ so
that both right and left eigenvectors can be readily used
without further scaling.

Figure 8 exemplifies the performance of the BSE
solver in MoLGw with an oligomer, namely polyacety-
lene Cy,Hy,4». The scaling with system size is made
apparent. The number of transitions from occupied to
empty states scales as n>. The BSE matrix is n® x n’.
The time necessary to construct it (upper panel) and the
memory necessary to store it (lower panel) indeed scale
as n*. Then the structure preserving algorithm presented
above is dominated by the diagonalization in its step 3.
This operation scales as the cube of the matrix dimen-
sion, which yields an overall scaling of n°. The mea-
sured slopes in Fig. 8 match rather well with the scalings
we have just anticipated.

As the calculation complexity increases quickly with
the size of the problem, parallelization of the code is
highly necessary. moLGw uses a ScaLAPACK distribu-
tion of the BSE matrix to distribute the memory and
workload for the diagonalization. It can be observed
from the lower panel of Fig. 8 that by increasing the
number of cores the memory consumption can be kept
below 2 Gb per core, which is a reasonable target for
modern computers. The middle panel shows how well
the structure preserving algorithm behaves as a function
of the number of cores. The construction of the BSE
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Figure 8: Numerical performance of the BSE solution in MoLGw
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sis with increasing length n. The upper panel shows the wall clock
time necessary to build the BSE. The middle panel shows the wall
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ted lines highlight the anticipated scaling of the computational load.
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matrix in the upper panel is more problematic for the
parallelization. Indeed, as in the rest of the code, the
calculation of the BSE matrix elements relies on the dis-
tribution of the auxiliary basis. Then this distribution of
the data must be transposed into the ScaLAPACK distri-
bution, which induces some intensive communications.

The performance as a function of the number of cores
is perhaps better appreciated from Fig. 9. For this small
example, we have managed to multiply the number of
cores up to the parallelization breakdown. The BSE
matrix building experiences an efficiency collapse be-
yond 64 cores, whereas the structure preserving diag-
onalization based on ScaLAPACK allows one to reach
144 cores without breakdown. It is remarkable that the
speed-up is rather close to the ideal one over two orders
of magnitude of core counts.

Of course, MmoLGw offers the possibility to limit the
BSE matrix size by removing the highest empty states
from the transition basis. This approximation should be
tested as an extra convergence parameter.

7. Summary

In this paper, we have presented version 1 of the
MoLGw code. This code is dedicated to MBPT calcu-
lations in the GW approximation for atoms, molecules,
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and clusters. The focus is to calculate i) the GW self-
energy to obtain accurate quasiparticle energies that
may be compared to photoemission spectroscopy and
i) the solutions to the BSE, to evaluate precise opti-
cal spectra that include the electron-hole interaction.
MoLGw relies on Gaussian type orbitals and therefore
make use of all of the past developments in quantum
chemistry.

We have shown the most central equations used in
practice in MOLGW, starting from the self-consistent field
within gKS, to the GW self-energy and BSE solution.
MOLGW is a unique code, since it implements the equa-
tions with or without the RI approximation. It also has
the advantage of calculating directly the spectral decom-
position of the screened Coulomb interaction W and
hence is able to calculate the GW self-energy at any
frequency w with no further technical approximation.
Incidentally, the RPA total energy is obtained for free.
MoLGw employs a recently developed structure preserv-
ing parallel algorithm to perform the diagonalization of
the BSE Hamiltonian.

This paper was also an opportunity to demonstrate
the validity of the RI by directly comparing calculations
with and without this approximation. Furthermore, we
introduced a technique, based on the single pole ap-
proximation, to speed-up the GW calculations and save
memory.

In conclusion, we stress that MoLGw version 1 is en-
closed with this paper. However the forthcoming up-
dates will be directly and freely obtained on a version-
ing server hosted on the web [102].
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