Skip to content

Articles

List of articles reporting calculations performed with MOLGW

Please do not hesitate to report your work to us.

  1. M. Vladaj, Q. Marécat, B. Senjean, M. Saubanère, The Journal of Chemical Physics 161, 074105 (2024).
    Variational minimization scheme for the one-particle reduced density matrix functional theory in the ensemble N-representability domain
  2. I. Kuusik, M. Kook, T. Käämbre, G. Michailoudi, A. Tõnisoo, V. Kisand, R. Pärna, J. Electron Spectrosc. Relat. Phenom. 275, 147462 (2024).
    Gas-phase PES and GW investigation of two widespread herbicides: MCPA and 2,4-dichlorophenoxyacetic acid
  3. D. Kumar, M. Banuary, A. K. Gupta, J. Chem. Theory Comput. 20, 6009 (2024).
    An Innovative Approach for Precise Identification of the Lowest Unoccupied Molecular Orbital Using the Parametric Equation of Motion
  4. A. M. Alvertis, D. B. Williams-Young, F. Bruneval, J. B. Neaton, J. Chem. Theory Comput. (2024).
    Influence of Electronic Correlations on Electron–Phonon Interactions of Molecular Systems with the GW and Coupled Cluster Methods
  5. M. Mansouri, C. Díaz, F. Martín, Commun. Mater. 5, 117 (2024).
    Optoelectronic properties of electron-acceptor molecules adsorbed on graphene/silicon carbide interfaces
  6. F. Heppner, N. Al-Shamery, P. S. Lee, T. Bredow, Mater. Adv. 5, 5251 (2024).
    Tuning melanin: theoretical analysis of functional group impact on electrochemical and optical properties
  7. Y. Byun, J. Yoo, Int. J. Quantum Chem. 124, e27345 (2024).
    GPU acceleration of many-body perturbation theory methods in MOLGW with OpenACC
  8. M. Rodríguez-Mayorga, P. Besalú-Sala, Á. J. Pérez-Jiménez, J. C. Sancho-García, J. Comput. Chem. 45, 995 (2024).
    Application to nonlinear optical properties of the RSX-QIDH double-hybrid range-separated functional
  9. F. Bruneval, A. Förster, J. Chem. Theory Comput. 20, 3218 (2024).
    Fully Dynamic G3W2 Self-Energy for Finite Systems: Formulas and Benchmark
  10. A. Mandal, T. Goswami, S. Chowdhury, J. Phys. Chem. A 127, 9885 (2023).
    A Computational Exploration of Exohedrally Transition Metal Doped Si94– Superatom Based Magnetic MSi9M′ Clusters (M, M′ = Sc(II) to Cu(II))
  11. R. Tomar, L. Bernasconi, D. Fazzi, T. Bredow, J. Phys. Chem. A 127, 9661 (2023).
    Theoretical Study on the Optoelectronic Properties of Merocyanine-Dyes
  12. A. M. Valencia, D. Bischof, S. Anhäuser, M. Zeplichal, A. Terfort, G. Witte, C. Cocchi, Electronic Structure 5, 033003 (2023).
    Excitons in organic materials: revisiting old concepts with new insights
  13. A. H. Denawi, F. Bruneval, M. Torrent, M. Rodríguez-Mayorga, Phys. Rev. B 108, 125107 (2023).
    GW density matrix for estimation of self-consistent GW total energies in solids
  14. M. Mansouri, P. Koval, S. Sharifzadeh, D. Sánchez-Portal, J. Phys. Chem. C 127, 16668 (2023).
    Molecular Doping in the Organic Semiconductor Diindenoperylene: Insights from Many-Body Perturbation Theory
  15. F. Goto, A. Calloni, I. Majumdar, R. Yivlialin, C. Filoni, C. Hogan, M. Palummo, A. O. Biroli, M. Finazzi, L. Duò, F. Ciccacci, G. Bussetti, Inorg. Chim. Acta 556, 121612 (2023).
    Exploring the range of applicability of anisotropic optical detection in axially coordinated supramolecular structures
  16. I. Kuusik, M. Kook, R. Pärna, V. Kisand, Chem. Phys. 572, 111971 (2023).
    Charge transfer and electronic relaxation effects in the photoemission of EMIM-DCA ionic liquid vapor
  17. Z. Hashemi, M. Knodt, M. R. G. Marques, L. Leppert, Electron. Struct. 5, 024006 (2023).
    Mapping charge-transfer excitations in Bacteriochlorophyll dimers from first principles
  18. C. Cocchi, M. Guerrini, J. Krumland, N. Trung Nguyen, A. M. Valencia, J. Phys. Mat. 6, 012001 (2023).
    Modeling the electronic structure of organic materials: a solid-state physicist’s perspective
  19. E. Molteni, G. Mattioli, D. Sangalli, Nuovo. Cimento C 45 C, 175 (2022).
    Ab initio circular dichroism with the yambo code: Beyond the independent particle approximation
  20. C. A. McKeon, S. M. Hamed, F. Bruneval, J. B. Neaton, J. Chem. Phys. 157, 074103 (2022).
    An optimally tuned range-separated hybrid starting point for ab initio GW plus Bethe–Salpeter equation calculations of molecules
  21. M. Marsili, S. Corni, J. Phys. Chem. C 126, 8768 (2022).
    Electronic Dynamics of a Molecular System Coupled to a Plasmonic Nanoparticle Combining the Polarizable Continuum Model and Many-Body Perturbation Theory
  22. N. Rußegger, A. M. Valencia, L. Merten, M. Zwadlo, G. Duva, L. Pithan, A. Gerlach, A. Hinderhofer, C. Cocchi, F. Schreiber, J. Phys. Chem. C 126, 4188 (2022).
    Molecular Charge Transfer Effects on Perylene Diimide Acceptor and Dinaphthothienothiophene Donor Systems
  23. X. Qi, F. Bruneval, I. Maliyov, Phys. Rev. Lett. 128, 043401 (2022).
    Ab Initio Prediction of a Negative Barkas Coefficient for Slow Protons and Antiprotons in LiF
  24. F. Bruneval, N. Dattani, M. J. van Setten, Front. Chem. 9, 749779 (2021).
    The GW Miracle in Many-Body Perturbation Theory for the Ionization Potential of Molecules
  25. D. Günder, A. M. Valencia, M. Guerrini, T. Breuer, C. Cocchi, G. Witte, J. Phys. Chem. Lett. 12, 9899 (2021).
    Polarization Resolved Optical Excitation of Charge-Transfer Excitons in PEN:PFP Cocrystalline Films: Limits of Nonperiodic Modeling
  26. M. Mansouri, D. Casanova, P. Koval, D. Sánchez-Portal, New J. Phys. 23, 093027 (2021).
    GW approximation for open-shell molecules: a first-principles study
  27. P. Grobas Illobre, M. Marsili, S. Corni, M. Stener, D. Toffoli, E. Coccia, J. Chem. Theory Comput. 17, 6314 (2021).
    Time-Resolved Excited-State Analysis of Molecular Electron Dynamics by TDDFT and Bethe–Salpeter Equation Formalisms
  28. M. Guerrini, A. M. Valencia, C. Cocchi, J. Phys. Chem. C 125, 20821 (2021).
    Long-Range Order Promotes Charge-Transfer Excitations in Donor/Acceptor Co-Crystals
  29. Z. C. Wong, L. Ungur, Phys. Chem. Chem. Phys. 23, 19054 (2021).
    Exploring vibronic coupling in the benzene radical cation and anion with different levels of the GW approximation
  30. C. P. Theurer, A. M. Valencia, J. Hausch, C. Zeiser, V. Sivanesan, C. Cocchi, P. Tegeder, and K. Broch, J. Phys. Chem. C 125, 6313 (2021).
    Photophysics of Charge Transfer Complexes Formed by Tetracene and Strong Acceptors
  31. A. M. Valencia, O. Shargaieva, R. Schier, E. Unger, C. Cocchi, J. Phys. Chem. Lett. 12, 2299 (2021).
    Optical Fingerprints of Polynuclear Complexes in Lead Halide Perovskite Precursor Solutions
  32. F. Bruneval, M. Rodriguez-Mayorga, P. Rinke, M. Dvorak, J. Chem. Theory Comput. 17, 2126 (2021).
    Improved One-Shot Total Energies from the Linearized GW Density Matrix
  33. Z. Hashemi, L. Leppert, J. Phys. Chem. A 125, 2163 (2021).
    Assessment of the Ab Initio Bethe–Salpeter Equation Approach for the Low-Lying Excitation Energies of Bacteriochlorophylls and Chlorophylls
  34. M. Rezaei, S. Öğüt, J. Chem. Phys. 154, 094307 (2021).
    Photoelectron spectra of early 3d-transition metal dioxide molecular anions from GW calculations
  35. C. Liu, J. Kloppenburg, Y. Yao, X. Ren, H. Appel, Y. Kanai, V. Blum J. Chem. Phys. 152, 044105 (2020).
    All-electron ab initio Bethe-Salpeter equation approach to neutral excitations in molecules with numeric atom-centered orbitals
  36. M. Guerrini, E. Delgado Aznar, C. Cocchi, J. Phys. Chem. C 124, 27801 (2020).
    Electronic and Optical Properties of Protonated Triazine Derivatives
  37. C. Ovando-Vázquez, D. Salgado-Blanco, F. López-Urías, ChemistrySelect 8, 8616 (2020).
    Nanoscale Properties of the Methylation in GpC Dinucleotide Systems
  38. J. Krumland, A. M. Valencia, S. Pittalis, C. A. Rozzi, C. Cocchi, J. Chem. Phys. 153, 054106 (2020).
    Understanding real-time time-dependent density-functional theory simulations of ultrafast laser-induced dynamics in organic molecules
  39. R. Schier, A. M. Valencia, C. Cocchi, J. Phys. Chem. C 124, 14363 (2020).
    Microscopic Insight into the Electronic Structure of BCF-Doped Oligothiophenes from Ab Initio Many-Body Theory
  40. F. Bruneval, I. Maliyov, C. Lapointe, and M.-C. Marinica, J. Chem. Theory Comput. 16, 4399 (2020).
    Extrapolating Unconverged GW Energies up to the Complete Basis Set Limit with Linear Regression
  41. K. T. Williams et al., Phys. Rev. X 10, 011041 (2020).
    Direct Comparison of Many-Body Methods for Realistic Electronic Hamiltonians
  42. M. Cazzaniga, F. Cargnoni, M. Penconi, A. Bossi, D. Ceresoli, J. Chem. Theory Comput. 16, 1188 (2020).
    Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes
  43. P.-F. Loos, B. Pradines, A. Scemama, E. Giner, J. Toulouse, J. Chem. Theory Comput. 16, 1018 (2020).
    Density-Based Basis-Set Incompleteness Correction for GW Methods
  44. A. M. Valencia, M. Guerrini, C. Cocchi, Phys. Chem. Chem. Phys. 22, 3527 (2020).
    Ab initio modelling of local interfaces in doped organic semiconductors
  45. I. Maliyov, J.-P. Crocombette, F. Bruneval, Phys. Rev. B 101, 035136 (2020).
    Quantitative electronic stopping power from localized basis set
  46. Y.-M. Byun, S. Öğüt, J. Chem. Phys. 151, 134305 (2019).
    Practical GW scheme for electronic structure of 3d-transition-metal monoxide anions: ScO, TiO, CuO, and ZnO
  47. P. Koval, M. P. Ljungberg, M. Müller, D. Sànchez-Portal, J. Chem. Theory Comput. 15, 4564 (2019).
    Toward Efficient GW Calculations Using Numerical Atomic Orbitals: Benchmarking and Application to Molecular Dynamics Simulations
  48. F. Bruneval, J. Chem. Theory Comput. 15, 4069 (2019).
    Assessment of the linearized GW density matrix for molecules
  49. M. Guerrini, A. Calzolari, D. Varsano, S. Corni, J. Chem. Theory Comput. 15, 3197 (2019).
    Quantifying the Plasmonic Character of Optical Excitations in a Molecular J-Aggregate
  50. A. M. Valencia, C. Cocchi, J. Phys. Chem. C 123, 9617 (2019).
    Electronic and Optical Properties of Oligothiophene-F4TCNQ Charge-Transfer Complexes: The Role of Donor Conjugation Length
  51. M. Guerrini, C. Cocchi, A. Calzolari, D. Varsano, S. Corni, J. Phys. Chem. C 123, 6831 (2019).
    Interplay between Intra- and Intermolecular Charge Transfer in the Optical Excitations of J-Aggregates
  52. S. Refaely-Abramson , Z.-F. Liu , F. Bruneval, J. B. Neaton, J. Phys. Chem. C 123, 6379 (2019).
    First-Principles Approach to the Conductance of Covalently Bound Molecular Junctions
  53. F. Bruneval, Phys. Rev. B 99, 041118(R) (2019).
    Improved density matrices for accurate molecular ionization potentials
  54. M. Véril, P. Romaniello, J. A. Berger, P.-F. Loos, J. Chem. Theory Comput. 14, 5220 (2018).
    Unphysical Discontinuities in GW Methods
  55. I. Maliyov, J.-P. Crocombette, F. Bruneval, Eur. Phys. J. B 91, 172 (2018).
    Electronic stopping power from time-dependent density-functional theory in Gaussian basis
  56. V. Ziaei, T. Bredow, J. Phys. Condens. Matter 30, 395501 (2018).
    Screening mixing GW/Bethe-Salpeter approach for triplet states of organic molecules
  57. B. Shi, S. Weissman, F. Bruneval, L. Kronik, S. Öğüt, J. Chem. Phys. 149, 064306 (2018).
    Photoelectron spectra of copper oxide cluster anions from first principles methods
  58. G. Roma, F. Bruneval, L. Martin-Samos, J. Phys. Chem. B 122, 2023 (2018).
    Optical Properties of Saturated and Unsaturated Carbonyl Defects in Polyethylene
  59. V. Ziaei, T. Bredow, Phys. Rev. B 96, 195115 (2017).
    Simple many-body based screening mixing ansatz for improvement of GW/Bethe-Salpeter equation excitation energies of molecular systems
  60. E. Coccia, D. Varsano, L. Guidoni, J. Chem. Theory Comput. 13, 4357 (2017).
    Theoretical S1 ← S0 Absorption Energies of the Anionic Forms of Oxyluciferin by Variational Monte Carlo and Many-Body Green's Function Theory
  61. L. Hung, F. Bruneval, K. Baishya, S. Öğüt, J. Chem. Theory Comput. 13, 2135 (2017).
    Benchmarking the GW Approximation and Bethe-Salpeter Equation for Groups IB and IIB Atoms and Monoxides
  62. T. Rangel, S.M. Hamed, F. Bruneval, J.B. Neaton, J. Chem. Phys. 146, 194108 (2017).
    An assessment of the low-lying excitation energies and triplet instabilities of organic molecules with an ab initio Bethe-Salpeter equation approach
  63. V. Ziaei, T. Bredow, Chem. Phys. Chem. 18, 579 (2017).
    Large-scale quantum many-body perturbation on spin and charge separation in excited states of synthesized donor/acceptor hybrid PBI-macrocycle complex
  64. F. Bruneval, J. Chem. Phys. 145, 234110 (2016).
    Optimized virtual orbital subspace for faster GW calculations in localized basis
  65. V. Ziaei, T. Bredow, J. Chem. Phys. 145, 174305 (2016).
    GW-BSE approach on S1 vertical transition energy of large charge transfer compounds: A performance assessment
  66. V. Ziaei, T. Bredow, J. Chem. Phys. 145, 064508 (2016).
    Red and blue shift of liquid water's excited states: A many body perturbation study
  67. F. Bruneval, T. Rangel, S.M. Hamed, M. Shao, C. Yang, J.B. Neaton, Comput. Phys. Commun. 208, 149 (2016).
    MOLGW 1: many-body perturbation theory software for atoms, molecules, and clusters
  68. T. Rangel, S.M. Hamed, F. Bruneval, J.B. Neaton, J. Chem. Theory Comput. 12, 2834 (2016).
    Evaluating the GW approximation with CCSD(T) for charged excitations across the oligoacenes
  69. X. Blase, P. Boulanger, F. Bruneval, M. Fernandez-Serra, I. Duchemin, J. Chem. Phys. 144, 034109 (2016).
    GW and Bethe-Salpeter study of small water clusters
  70. F. Bruneval, S. M. Hamed, J. B. Neaton, J. Chem. Phys. 142, 244101 (2015).
    A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules
  71. M. P. Ljungberg, P. Koval, F. Ferrari, D. Foerster, D. Sànchez-Portal, Phys. Rev. B 92, 075422 (2015).
    Cubic-scaling iterative solution of the Bethe-Salpeter equation for finite systems
  72. P. Koval, D. Foerster, D. Sànchez-Portal, Phys. Rev. B 89, 155417 (2014).
    Fully self-consistent GW and quasiparticle self-consistent GW for molecules
  73. F. Bruneval, M. A. L. Marques, J. Chem. Theory Comput. 9, 324 (2013).
    Benchmarking the Starting Points of the GW Approximation for Molecules
  74. F. Bruneval, J. Chem. Phys. 136, 194107 (2012).
    Ionization energy of atoms obtained from GW self-energy or from random phase approximation total energies