Skip to content

Articles

List of articles reporting calculations performed with MOLGW

Please do not hesitate to report your work to us.

  1. E. Trushin, S. Fauser, A. Mölkner, J. Erhard, A. Görling, Phys. Rev. Lett. 134, 016402 (2025).
    Accurate Correlation Potentials from the Self-Consistent Random Phase Approximation
  2. M. Mansouri, F. Martín, C. Díaz, J. Phys. Chem. C 129, 4155 (2025).
    Tunable Doping and Optoelectronic Modulation in Graphene-Covered 4H-SiC Surfaces
  3. M. Rodríguez-Mayorga, P. Loos, F. Bruneval, L. Visscher, The Journal of Chemical Physics 162, 054716 (2025).
    Time-reversal symmetry in RDMFT and pCCD with complex-valued orbitals
  4. D. Kumar, A. K. Gupta, Phys. Rev. A 110, 062821 (2024).
    Self-consistent-field solution for unstable anions
  5. A. Förster, F. Bruneval, J. Phys. Chem. Lett. 15, 12526 (2024).
    Why Does the GW Approximation Give Accurate Quasiparticle Energies? The Cancellation of Vertex Corrections Quantified
  6. O. Veteläinen, M. Babayan, A. Rahman Abid, E. Kukk, L. Pihlava, S. Urpelainen, M. Huttula, A. Kivimäki, M. Alatalo, M. Patanen, J. Phys. B 57, 225101 (2024).
    Valence photoelectron spectra of aminobenzoic acid molecules: a combined theoretical and experimental study
  7. D. Kumar, A. K. Gupta, J. Chem. Phys. 161, 094108 (2024).
    A unique approach to address avoided crossings in the charge stabilization curve for LUMO identification
  8. J. Bang, M. Jang, Y. Ahn, C. W. Park, S. H. Nam, J. Macdonald, K. Cho, Y. Noh, Y. Kim, Y. Kim, J. Oh, S. Y. Lee, J. Park, J. Phys. Chem. Lett. 15, 8676 (2024).
    Remotely Modulating the Optical Properties of Organic Charge-Transfer Crystallites via Molecular Packing
  9. M. Vladaj, Q. Marécat, B. Senjean, M. Saubanère, J. Chem. Phys. 161, 074105 (2024).
    Variational minimization scheme for the one-particle reduced density matrix functional theory in the ensemble N-representability domain
  10. I. Kuusik, M. Kook, T. Käämbre, G. Michailoudi, A. Tõnisoo, V. Kisand, R. Pärna, J. Electron Spectrosc. Relat. Phenom. 275, 147462 (2024).
    Gas-phase PES and GW investigation of two widespread herbicides: MCPA and 2,4-dichlorophenoxyacetic acid
  11. D. Kumar, M. Banuary, A. K. Gupta, J. Chem. Theory Comput. 20, 6009 (2024).
    An Innovative Approach for Precise Identification of the Lowest Unoccupied Molecular Orbital Using the Parametric Equation of Motion
  12. A. M. Alvertis, D. B. Williams-Young, F. Bruneval, J. B. Neaton, J. Chem. Theory Comput. (2024).
    Influence of Electronic Correlations on Electron–Phonon Interactions of Molecular Systems with the GW and Coupled Cluster Methods
  13. M. Mansouri, C. Díaz, F. Martín, Commun. Mater. 5, 117 (2024).
    Optoelectronic properties of electron-acceptor molecules adsorbed on graphene/silicon carbide interfaces
  14. F. Heppner, N. Al-Shamery, P. S. Lee, T. Bredow, Mater. Adv. 5, 5251 (2024).
    Tuning melanin: theoretical analysis of functional group impact on electrochemical and optical properties
  15. Y. Byun, J. Yoo, Int. J. Quantum Chem. 124, e27345 (2024).
    GPU acceleration of many-body perturbation theory methods in MOLGW with OpenACC
  16. M. Rodríguez-Mayorga, P. Besalú-Sala, Á. J. Pérez-Jiménez, J. C. Sancho-García, J. Comput. Chem. 45, 995 (2024).
    Application to nonlinear optical properties of the RSX-QIDH double-hybrid range-separated functional
  17. F. Bruneval, A. Förster, J. Chem. Theory Comput. 20, 3218 (2024).
    Fully Dynamic G3W2 Self-Energy for Finite Systems: Formulas and Benchmark
  18. A. Mandal, T. Goswami, S. Chowdhury, J. Phys. Chem. A 127, 9885 (2023).
    A Computational Exploration of Exohedrally Transition Metal Doped Si94– Superatom Based Magnetic MSi9M′ Clusters (M, M′ = Sc(II) to Cu(II))
  19. R. Tomar, L. Bernasconi, D. Fazzi, T. Bredow, J. Phys. Chem. A 127, 9661 (2023).
    Theoretical Study on the Optoelectronic Properties of Merocyanine-Dyes
  20. A. M. Valencia, D. Bischof, S. Anhäuser, M. Zeplichal, A. Terfort, G. Witte, C. Cocchi, Electronic Structure 5, 033003 (2023).
    Excitons in organic materials: revisiting old concepts with new insights
  21. A. H. Denawi, F. Bruneval, M. Torrent, M. Rodríguez-Mayorga, Phys. Rev. B 108, 125107 (2023).
    GW density matrix for estimation of self-consistent GW total energies in solids
  22. M. Mansouri, P. Koval, S. Sharifzadeh, D. Sánchez-Portal, J. Phys. Chem. C 127, 16668 (2023).
    Molecular Doping in the Organic Semiconductor Diindenoperylene: Insights from Many-Body Perturbation Theory
  23. F. Goto, A. Calloni, I. Majumdar, R. Yivlialin, C. Filoni, C. Hogan, M. Palummo, A. O. Biroli, M. Finazzi, L. Duò, F. Ciccacci, G. Bussetti, Inorg. Chim. Acta 556, 121612 (2023).
    Exploring the range of applicability of anisotropic optical detection in axially coordinated supramolecular structures
  24. I. Kuusik, M. Kook, R. Pärna, V. Kisand, Chem. Phys. 572, 111971 (2023).
    Charge transfer and electronic relaxation effects in the photoemission of EMIM-DCA ionic liquid vapor
  25. Z. Hashemi, M. Knodt, M. R. G. Marques, L. Leppert, Electron. Struct. 5, 024006 (2023).
    Mapping charge-transfer excitations in Bacteriochlorophyll dimers from first principles
  26. C. Cocchi, M. Guerrini, J. Krumland, N. Trung Nguyen, A. M. Valencia, J. Phys. Mat. 6, 012001 (2023).
    Modeling the electronic structure of organic materials: a solid-state physicist’s perspective
  27. E. Molteni, G. Mattioli, D. Sangalli, Nuovo. Cimento C 45 C, 175 (2022).
    Ab initio circular dichroism with the yambo code: Beyond the independent particle approximation
  28. C. A. McKeon, S. M. Hamed, F. Bruneval, J. B. Neaton, J. Chem. Phys. 157, 074103 (2022).
    An optimally tuned range-separated hybrid starting point for ab initio GW plus Bethe–Salpeter equation calculations of molecules
  29. M. Marsili, S. Corni, J. Phys. Chem. C 126, 8768 (2022).
    Electronic Dynamics of a Molecular System Coupled to a Plasmonic Nanoparticle Combining the Polarizable Continuum Model and Many-Body Perturbation Theory
  30. N. Rußegger, A. M. Valencia, L. Merten, M. Zwadlo, G. Duva, L. Pithan, A. Gerlach, A. Hinderhofer, C. Cocchi, F. Schreiber, J. Phys. Chem. C 126, 4188 (2022).
    Molecular Charge Transfer Effects on Perylene Diimide Acceptor and Dinaphthothienothiophene Donor Systems
  31. X. Qi, F. Bruneval, I. Maliyov, Phys. Rev. Lett. 128, 043401 (2022).
    Ab Initio Prediction of a Negative Barkas Coefficient for Slow Protons and Antiprotons in LiF
  32. F. Bruneval, N. Dattani, M. J. van Setten, Front. Chem. 9, 749779 (2021).
    The GW Miracle in Many-Body Perturbation Theory for the Ionization Potential of Molecules
  33. D. Günder, A. M. Valencia, M. Guerrini, T. Breuer, C. Cocchi, G. Witte, J. Phys. Chem. Lett. 12, 9899 (2021).
    Polarization Resolved Optical Excitation of Charge-Transfer Excitons in PEN:PFP Cocrystalline Films: Limits of Nonperiodic Modeling
  34. M. Mansouri, D. Casanova, P. Koval, D. Sánchez-Portal, New J. Phys. 23, 093027 (2021).
    GW approximation for open-shell molecules: a first-principles study
  35. P. Grobas Illobre, M. Marsili, S. Corni, M. Stener, D. Toffoli, E. Coccia, J. Chem. Theory Comput. 17, 6314 (2021).
    Time-Resolved Excited-State Analysis of Molecular Electron Dynamics by TDDFT and Bethe–Salpeter Equation Formalisms
  36. M. Guerrini, A. M. Valencia, C. Cocchi, J. Phys. Chem. C 125, 20821 (2021).
    Long-Range Order Promotes Charge-Transfer Excitations in Donor/Acceptor Co-Crystals
  37. Z. C. Wong, L. Ungur, Phys. Chem. Chem. Phys. 23, 19054 (2021).
    Exploring vibronic coupling in the benzene radical cation and anion with different levels of the GW approximation
  38. C. P. Theurer, A. M. Valencia, J. Hausch, C. Zeiser, V. Sivanesan, C. Cocchi, P. Tegeder, and K. Broch, J. Phys. Chem. C 125, 6313 (2021).
    Photophysics of Charge Transfer Complexes Formed by Tetracene and Strong Acceptors
  39. A. M. Valencia, O. Shargaieva, R. Schier, E. Unger, C. Cocchi, J. Phys. Chem. Lett. 12, 2299 (2021).
    Optical Fingerprints of Polynuclear Complexes in Lead Halide Perovskite Precursor Solutions
  40. F. Bruneval, M. Rodriguez-Mayorga, P. Rinke, M. Dvorak, J. Chem. Theory Comput. 17, 2126 (2021).
    Improved One-Shot Total Energies from the Linearized GW Density Matrix
  41. Z. Hashemi, L. Leppert, J. Phys. Chem. A 125, 2163 (2021).
    Assessment of the Ab Initio Bethe–Salpeter Equation Approach for the Low-Lying Excitation Energies of Bacteriochlorophylls and Chlorophylls
  42. M. Rezaei, S. Öğüt, J. Chem. Phys. 154, 094307 (2021).
    Photoelectron spectra of early 3d-transition metal dioxide molecular anions from GW calculations
  43. C. Liu, J. Kloppenburg, Y. Yao, X. Ren, H. Appel, Y. Kanai, V. Blum J. Chem. Phys. 152, 044105 (2020).
    All-electron ab initio Bethe-Salpeter equation approach to neutral excitations in molecules with numeric atom-centered orbitals
  44. M. Guerrini, E. Delgado Aznar, C. Cocchi, J. Phys. Chem. C 124, 27801 (2020).
    Electronic and Optical Properties of Protonated Triazine Derivatives
  45. C. Ovando-Vázquez, D. Salgado-Blanco, F. López-Urías, ChemistrySelect 8, 8616 (2020).
    Nanoscale Properties of the Methylation in GpC Dinucleotide Systems
  46. J. Krumland, A. M. Valencia, S. Pittalis, C. A. Rozzi, C. Cocchi, J. Chem. Phys. 153, 054106 (2020).
    Understanding real-time time-dependent density-functional theory simulations of ultrafast laser-induced dynamics in organic molecules
  47. R. Schier, A. M. Valencia, C. Cocchi, J. Phys. Chem. C 124, 14363 (2020).
    Microscopic Insight into the Electronic Structure of BCF-Doped Oligothiophenes from Ab Initio Many-Body Theory
  48. F. Bruneval, I. Maliyov, C. Lapointe, and M.-C. Marinica, J. Chem. Theory Comput. 16, 4399 (2020).
    Extrapolating Unconverged GW Energies up to the Complete Basis Set Limit with Linear Regression
  49. K. T. Williams et al., Phys. Rev. X 10, 011041 (2020).
    Direct Comparison of Many-Body Methods for Realistic Electronic Hamiltonians
  50. M. Cazzaniga, F. Cargnoni, M. Penconi, A. Bossi, D. Ceresoli, J. Chem. Theory Comput. 16, 1188 (2020).
    Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes
  51. P.-F. Loos, B. Pradines, A. Scemama, E. Giner, J. Toulouse, J. Chem. Theory Comput. 16, 1018 (2020).
    Density-Based Basis-Set Incompleteness Correction for GW Methods
  52. A. M. Valencia, M. Guerrini, C. Cocchi, Phys. Chem. Chem. Phys. 22, 3527 (2020).
    Ab initio modelling of local interfaces in doped organic semiconductors
  53. I. Maliyov, J.-P. Crocombette, F. Bruneval, Phys. Rev. B 101, 035136 (2020).
    Quantitative electronic stopping power from localized basis set
  54. Y.-M. Byun, S. Öğüt, J. Chem. Phys. 151, 134305 (2019).
    Practical GW scheme for electronic structure of 3d-transition-metal monoxide anions: ScO, TiO, CuO, and ZnO
  55. P. Koval, M. P. Ljungberg, M. Müller, D. Sànchez-Portal, J. Chem. Theory Comput. 15, 4564 (2019).
    Toward Efficient GW Calculations Using Numerical Atomic Orbitals: Benchmarking and Application to Molecular Dynamics Simulations
  56. F. Bruneval, J. Chem. Theory Comput. 15, 4069 (2019).
    Assessment of the linearized GW density matrix for molecules
  57. M. Guerrini, A. Calzolari, D. Varsano, S. Corni, J. Chem. Theory Comput. 15, 3197 (2019).
    Quantifying the Plasmonic Character of Optical Excitations in a Molecular J-Aggregate
  58. A. M. Valencia, C. Cocchi, J. Phys. Chem. C 123, 9617 (2019).
    Electronic and Optical Properties of Oligothiophene-F4TCNQ Charge-Transfer Complexes: The Role of Donor Conjugation Length
  59. M. Guerrini, C. Cocchi, A. Calzolari, D. Varsano, S. Corni, J. Phys. Chem. C 123, 6831 (2019).
    Interplay between Intra- and Intermolecular Charge Transfer in the Optical Excitations of J-Aggregates
  60. S. Refaely-Abramson , Z.-F. Liu , F. Bruneval, J. B. Neaton, J. Phys. Chem. C 123, 6379 (2019).
    First-Principles Approach to the Conductance of Covalently Bound Molecular Junctions
  61. F. Bruneval, Phys. Rev. B 99, 041118(R) (2019).
    Improved density matrices for accurate molecular ionization potentials
  62. M. Véril, P. Romaniello, J. A. Berger, P.-F. Loos, J. Chem. Theory Comput. 14, 5220 (2018).
    Unphysical Discontinuities in GW Methods
  63. I. Maliyov, J.-P. Crocombette, F. Bruneval, Eur. Phys. J. B 91, 172 (2018).
    Electronic stopping power from time-dependent density-functional theory in Gaussian basis
  64. V. Ziaei, T. Bredow, J. Phys. Condens. Matter 30, 395501 (2018).
    Screening mixing GW/Bethe-Salpeter approach for triplet states of organic molecules
  65. B. Shi, S. Weissman, F. Bruneval, L. Kronik, S. Öğüt, J. Chem. Phys. 149, 064306 (2018).
    Photoelectron spectra of copper oxide cluster anions from first principles methods
  66. G. Roma, F. Bruneval, L. Martin-Samos, J. Phys. Chem. B 122, 2023 (2018).
    Optical Properties of Saturated and Unsaturated Carbonyl Defects in Polyethylene
  67. V. Ziaei, T. Bredow, Phys. Rev. B 96, 195115 (2017).
    Simple many-body based screening mixing ansatz for improvement of GW/Bethe-Salpeter equation excitation energies of molecular systems
  68. E. Coccia, D. Varsano, L. Guidoni, J. Chem. Theory Comput. 13, 4357 (2017).
    Theoretical S1 ← S0 Absorption Energies of the Anionic Forms of Oxyluciferin by Variational Monte Carlo and Many-Body Green's Function Theory
  69. L. Hung, F. Bruneval, K. Baishya, S. Öğüt, J. Chem. Theory Comput. 13, 2135 (2017).
    Benchmarking the GW Approximation and Bethe-Salpeter Equation for Groups IB and IIB Atoms and Monoxides
  70. T. Rangel, S.M. Hamed, F. Bruneval, J.B. Neaton, J. Chem. Phys. 146, 194108 (2017).
    An assessment of the low-lying excitation energies and triplet instabilities of organic molecules with an ab initio Bethe-Salpeter equation approach
  71. V. Ziaei, T. Bredow, Chem. Phys. Chem. 18, 579 (2017).
    Large-scale quantum many-body perturbation on spin and charge separation in excited states of synthesized donor/acceptor hybrid PBI-macrocycle complex
  72. F. Bruneval, J. Chem. Phys. 145, 234110 (2016).
    Optimized virtual orbital subspace for faster GW calculations in localized basis
  73. V. Ziaei, T. Bredow, J. Chem. Phys. 145, 174305 (2016).
    GW-BSE approach on S1 vertical transition energy of large charge transfer compounds: A performance assessment
  74. V. Ziaei, T. Bredow, J. Chem. Phys. 145, 064508 (2016).
    Red and blue shift of liquid water's excited states: A many body perturbation study
  75. F. Bruneval, T. Rangel, S.M. Hamed, M. Shao, C. Yang, J.B. Neaton, Comput. Phys. Commun. 208, 149 (2016).
    MOLGW 1: many-body perturbation theory software for atoms, molecules, and clusters
  76. T. Rangel, S.M. Hamed, F. Bruneval, J.B. Neaton, J. Chem. Theory Comput. 12, 2834 (2016).
    Evaluating the GW approximation with CCSD(T) for charged excitations across the oligoacenes
  77. X. Blase, P. Boulanger, F. Bruneval, M. Fernandez-Serra, I. Duchemin, J. Chem. Phys. 144, 034109 (2016).
    GW and Bethe-Salpeter study of small water clusters
  78. F. Bruneval, S. M. Hamed, J. B. Neaton, J. Chem. Phys. 142, 244101 (2015).
    A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules
  79. M. P. Ljungberg, P. Koval, F. Ferrari, D. Foerster, D. Sànchez-Portal, Phys. Rev. B 92, 075422 (2015).
    Cubic-scaling iterative solution of the Bethe-Salpeter equation for finite systems
  80. P. Koval, D. Foerster, D. Sànchez-Portal, Phys. Rev. B 89, 155417 (2014).
    Fully self-consistent GW and quasiparticle self-consistent GW for molecules
  81. F. Bruneval, M. A. L. Marques, J. Chem. Theory Comput. 9, 324 (2013).
    Benchmarking the Starting Points of the GW Approximation for Molecules
  82. F. Bruneval, J. Chem. Phys. 136, 194107 (2012).
    Ionization energy of atoms obtained from GW self-energy or from random phase approximation total energies