Skip to content

Articles

List of articles reporting calculations performed with MOLGW

Please do not hesitate to report your work to us.

  1. D. Kumar, A. K. Gupta, Phys. Rev. A 110, 062821 (2024).
    Self-consistent-field solution for unstable anions
  2. A. Förster, F. Bruneval, J. Phys. Chem. Lett. 15, 12526 (2024).
    Why Does the GW Approximation Give Accurate Quasiparticle Energies? The Cancellation of Vertex Corrections Quantified
  3. O. Veteläinen, M. Babayan, A. Rahman Abid, E. Kukk, L. Pihlava, S. Urpelainen, M. Huttula, A. Kivimäki, M. Alatalo, M. Patanen, J. Phys. B 57, 225101 (2024).
    Valence photoelectron spectra of aminobenzoic acid molecules: a combined theoretical and experimental study
  4. D. Kumar, A. K. Gupta, J. Chem. Phys. 161, 094108 (2024).
    A unique approach to address avoided crossings in the charge stabilization curve for LUMO identification
  5. J. Bang, M. Jang, Y. Ahn, C. W. Park, S. H. Nam, J. Macdonald, K. Cho, Y. Noh, Y. Kim, Y. Kim, J. Oh, S. Y. Lee, J. Park, J. Phys. Chem. Lett. 15, 8676 (2024).
    Remotely Modulating the Optical Properties of Organic Charge-Transfer Crystallites via Molecular Packing
  6. M. Vladaj, Q. Marécat, B. Senjean, M. Saubanère, J. Chem. Phys. 161, 074105 (2024).
    Variational minimization scheme for the one-particle reduced density matrix functional theory in the ensemble N-representability domain
  7. I. Kuusik, M. Kook, T. Käämbre, G. Michailoudi, A. Tõnisoo, V. Kisand, R. Pärna, J. Electron Spectrosc. Relat. Phenom. 275, 147462 (2024).
    Gas-phase PES and GW investigation of two widespread herbicides: MCPA and 2,4-dichlorophenoxyacetic acid
  8. D. Kumar, M. Banuary, A. K. Gupta, J. Chem. Theory Comput. 20, 6009 (2024).
    An Innovative Approach for Precise Identification of the Lowest Unoccupied Molecular Orbital Using the Parametric Equation of Motion
  9. A. M. Alvertis, D. B. Williams-Young, F. Bruneval, J. B. Neaton, J. Chem. Theory Comput. (2024).
    Influence of Electronic Correlations on Electron–Phonon Interactions of Molecular Systems with the GW and Coupled Cluster Methods
  10. M. Mansouri, C. Díaz, F. Martín, Commun. Mater. 5, 117 (2024).
    Optoelectronic properties of electron-acceptor molecules adsorbed on graphene/silicon carbide interfaces
  11. F. Heppner, N. Al-Shamery, P. S. Lee, T. Bredow, Mater. Adv. 5, 5251 (2024).
    Tuning melanin: theoretical analysis of functional group impact on electrochemical and optical properties
  12. Y. Byun, J. Yoo, Int. J. Quantum Chem. 124, e27345 (2024).
    GPU acceleration of many-body perturbation theory methods in MOLGW with OpenACC
  13. M. Rodríguez-Mayorga, P. Besalú-Sala, Á. J. Pérez-Jiménez, J. C. Sancho-García, J. Comput. Chem. 45, 995 (2024).
    Application to nonlinear optical properties of the RSX-QIDH double-hybrid range-separated functional
  14. F. Bruneval, A. Förster, J. Chem. Theory Comput. 20, 3218 (2024).
    Fully Dynamic G3W2 Self-Energy for Finite Systems: Formulas and Benchmark
  15. A. Mandal, T. Goswami, S. Chowdhury, J. Phys. Chem. A 127, 9885 (2023).
    A Computational Exploration of Exohedrally Transition Metal Doped Si94– Superatom Based Magnetic MSi9M′ Clusters (M, M′ = Sc(II) to Cu(II))
  16. R. Tomar, L. Bernasconi, D. Fazzi, T. Bredow, J. Phys. Chem. A 127, 9661 (2023).
    Theoretical Study on the Optoelectronic Properties of Merocyanine-Dyes
  17. A. M. Valencia, D. Bischof, S. Anhäuser, M. Zeplichal, A. Terfort, G. Witte, C. Cocchi, Electronic Structure 5, 033003 (2023).
    Excitons in organic materials: revisiting old concepts with new insights
  18. A. H. Denawi, F. Bruneval, M. Torrent, M. Rodríguez-Mayorga, Phys. Rev. B 108, 125107 (2023).
    GW density matrix for estimation of self-consistent GW total energies in solids
  19. M. Mansouri, P. Koval, S. Sharifzadeh, D. Sánchez-Portal, J. Phys. Chem. C 127, 16668 (2023).
    Molecular Doping in the Organic Semiconductor Diindenoperylene: Insights from Many-Body Perturbation Theory
  20. F. Goto, A. Calloni, I. Majumdar, R. Yivlialin, C. Filoni, C. Hogan, M. Palummo, A. O. Biroli, M. Finazzi, L. Duò, F. Ciccacci, G. Bussetti, Inorg. Chim. Acta 556, 121612 (2023).
    Exploring the range of applicability of anisotropic optical detection in axially coordinated supramolecular structures
  21. I. Kuusik, M. Kook, R. Pärna, V. Kisand, Chem. Phys. 572, 111971 (2023).
    Charge transfer and electronic relaxation effects in the photoemission of EMIM-DCA ionic liquid vapor
  22. Z. Hashemi, M. Knodt, M. R. G. Marques, L. Leppert, Electron. Struct. 5, 024006 (2023).
    Mapping charge-transfer excitations in Bacteriochlorophyll dimers from first principles
  23. C. Cocchi, M. Guerrini, J. Krumland, N. Trung Nguyen, A. M. Valencia, J. Phys. Mat. 6, 012001 (2023).
    Modeling the electronic structure of organic materials: a solid-state physicist’s perspective
  24. E. Molteni, G. Mattioli, D. Sangalli, Nuovo. Cimento C 45 C, 175 (2022).
    Ab initio circular dichroism with the yambo code: Beyond the independent particle approximation
  25. C. A. McKeon, S. M. Hamed, F. Bruneval, J. B. Neaton, J. Chem. Phys. 157, 074103 (2022).
    An optimally tuned range-separated hybrid starting point for ab initio GW plus Bethe–Salpeter equation calculations of molecules
  26. M. Marsili, S. Corni, J. Phys. Chem. C 126, 8768 (2022).
    Electronic Dynamics of a Molecular System Coupled to a Plasmonic Nanoparticle Combining the Polarizable Continuum Model and Many-Body Perturbation Theory
  27. N. Rußegger, A. M. Valencia, L. Merten, M. Zwadlo, G. Duva, L. Pithan, A. Gerlach, A. Hinderhofer, C. Cocchi, F. Schreiber, J. Phys. Chem. C 126, 4188 (2022).
    Molecular Charge Transfer Effects on Perylene Diimide Acceptor and Dinaphthothienothiophene Donor Systems
  28. X. Qi, F. Bruneval, I. Maliyov, Phys. Rev. Lett. 128, 043401 (2022).
    Ab Initio Prediction of a Negative Barkas Coefficient for Slow Protons and Antiprotons in LiF
  29. F. Bruneval, N. Dattani, M. J. van Setten, Front. Chem. 9, 749779 (2021).
    The GW Miracle in Many-Body Perturbation Theory for the Ionization Potential of Molecules
  30. D. Günder, A. M. Valencia, M. Guerrini, T. Breuer, C. Cocchi, G. Witte, J. Phys. Chem. Lett. 12, 9899 (2021).
    Polarization Resolved Optical Excitation of Charge-Transfer Excitons in PEN:PFP Cocrystalline Films: Limits of Nonperiodic Modeling
  31. M. Mansouri, D. Casanova, P. Koval, D. Sánchez-Portal, New J. Phys. 23, 093027 (2021).
    GW approximation for open-shell molecules: a first-principles study
  32. P. Grobas Illobre, M. Marsili, S. Corni, M. Stener, D. Toffoli, E. Coccia, J. Chem. Theory Comput. 17, 6314 (2021).
    Time-Resolved Excited-State Analysis of Molecular Electron Dynamics by TDDFT and Bethe–Salpeter Equation Formalisms
  33. M. Guerrini, A. M. Valencia, C. Cocchi, J. Phys. Chem. C 125, 20821 (2021).
    Long-Range Order Promotes Charge-Transfer Excitations in Donor/Acceptor Co-Crystals
  34. Z. C. Wong, L. Ungur, Phys. Chem. Chem. Phys. 23, 19054 (2021).
    Exploring vibronic coupling in the benzene radical cation and anion with different levels of the GW approximation
  35. C. P. Theurer, A. M. Valencia, J. Hausch, C. Zeiser, V. Sivanesan, C. Cocchi, P. Tegeder, and K. Broch, J. Phys. Chem. C 125, 6313 (2021).
    Photophysics of Charge Transfer Complexes Formed by Tetracene and Strong Acceptors
  36. A. M. Valencia, O. Shargaieva, R. Schier, E. Unger, C. Cocchi, J. Phys. Chem. Lett. 12, 2299 (2021).
    Optical Fingerprints of Polynuclear Complexes in Lead Halide Perovskite Precursor Solutions
  37. F. Bruneval, M. Rodriguez-Mayorga, P. Rinke, M. Dvorak, J. Chem. Theory Comput. 17, 2126 (2021).
    Improved One-Shot Total Energies from the Linearized GW Density Matrix
  38. Z. Hashemi, L. Leppert, J. Phys. Chem. A 125, 2163 (2021).
    Assessment of the Ab Initio Bethe–Salpeter Equation Approach for the Low-Lying Excitation Energies of Bacteriochlorophylls and Chlorophylls
  39. M. Rezaei, S. Öğüt, J. Chem. Phys. 154, 094307 (2021).
    Photoelectron spectra of early 3d-transition metal dioxide molecular anions from GW calculations
  40. C. Liu, J. Kloppenburg, Y. Yao, X. Ren, H. Appel, Y. Kanai, V. Blum J. Chem. Phys. 152, 044105 (2020).
    All-electron ab initio Bethe-Salpeter equation approach to neutral excitations in molecules with numeric atom-centered orbitals
  41. M. Guerrini, E. Delgado Aznar, C. Cocchi, J. Phys. Chem. C 124, 27801 (2020).
    Electronic and Optical Properties of Protonated Triazine Derivatives
  42. C. Ovando-Vázquez, D. Salgado-Blanco, F. López-Urías, ChemistrySelect 8, 8616 (2020).
    Nanoscale Properties of the Methylation in GpC Dinucleotide Systems
  43. J. Krumland, A. M. Valencia, S. Pittalis, C. A. Rozzi, C. Cocchi, J. Chem. Phys. 153, 054106 (2020).
    Understanding real-time time-dependent density-functional theory simulations of ultrafast laser-induced dynamics in organic molecules
  44. R. Schier, A. M. Valencia, C. Cocchi, J. Phys. Chem. C 124, 14363 (2020).
    Microscopic Insight into the Electronic Structure of BCF-Doped Oligothiophenes from Ab Initio Many-Body Theory
  45. F. Bruneval, I. Maliyov, C. Lapointe, and M.-C. Marinica, J. Chem. Theory Comput. 16, 4399 (2020).
    Extrapolating Unconverged GW Energies up to the Complete Basis Set Limit with Linear Regression
  46. K. T. Williams et al., Phys. Rev. X 10, 011041 (2020).
    Direct Comparison of Many-Body Methods for Realistic Electronic Hamiltonians
  47. M. Cazzaniga, F. Cargnoni, M. Penconi, A. Bossi, D. Ceresoli, J. Chem. Theory Comput. 16, 1188 (2020).
    Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes
  48. P.-F. Loos, B. Pradines, A. Scemama, E. Giner, J. Toulouse, J. Chem. Theory Comput. 16, 1018 (2020).
    Density-Based Basis-Set Incompleteness Correction for GW Methods
  49. A. M. Valencia, M. Guerrini, C. Cocchi, Phys. Chem. Chem. Phys. 22, 3527 (2020).
    Ab initio modelling of local interfaces in doped organic semiconductors
  50. I. Maliyov, J.-P. Crocombette, F. Bruneval, Phys. Rev. B 101, 035136 (2020).
    Quantitative electronic stopping power from localized basis set
  51. Y.-M. Byun, S. Öğüt, J. Chem. Phys. 151, 134305 (2019).
    Practical GW scheme for electronic structure of 3d-transition-metal monoxide anions: ScO, TiO, CuO, and ZnO
  52. P. Koval, M. P. Ljungberg, M. Müller, D. Sànchez-Portal, J. Chem. Theory Comput. 15, 4564 (2019).
    Toward Efficient GW Calculations Using Numerical Atomic Orbitals: Benchmarking and Application to Molecular Dynamics Simulations
  53. F. Bruneval, J. Chem. Theory Comput. 15, 4069 (2019).
    Assessment of the linearized GW density matrix for molecules
  54. M. Guerrini, A. Calzolari, D. Varsano, S. Corni, J. Chem. Theory Comput. 15, 3197 (2019).
    Quantifying the Plasmonic Character of Optical Excitations in a Molecular J-Aggregate
  55. A. M. Valencia, C. Cocchi, J. Phys. Chem. C 123, 9617 (2019).
    Electronic and Optical Properties of Oligothiophene-F4TCNQ Charge-Transfer Complexes: The Role of Donor Conjugation Length
  56. M. Guerrini, C. Cocchi, A. Calzolari, D. Varsano, S. Corni, J. Phys. Chem. C 123, 6831 (2019).
    Interplay between Intra- and Intermolecular Charge Transfer in the Optical Excitations of J-Aggregates
  57. S. Refaely-Abramson , Z.-F. Liu , F. Bruneval, J. B. Neaton, J. Phys. Chem. C 123, 6379 (2019).
    First-Principles Approach to the Conductance of Covalently Bound Molecular Junctions
  58. F. Bruneval, Phys. Rev. B 99, 041118(R) (2019).
    Improved density matrices for accurate molecular ionization potentials
  59. M. Véril, P. Romaniello, J. A. Berger, P.-F. Loos, J. Chem. Theory Comput. 14, 5220 (2018).
    Unphysical Discontinuities in GW Methods
  60. I. Maliyov, J.-P. Crocombette, F. Bruneval, Eur. Phys. J. B 91, 172 (2018).
    Electronic stopping power from time-dependent density-functional theory in Gaussian basis
  61. V. Ziaei, T. Bredow, J. Phys. Condens. Matter 30, 395501 (2018).
    Screening mixing GW/Bethe-Salpeter approach for triplet states of organic molecules
  62. B. Shi, S. Weissman, F. Bruneval, L. Kronik, S. Öğüt, J. Chem. Phys. 149, 064306 (2018).
    Photoelectron spectra of copper oxide cluster anions from first principles methods
  63. G. Roma, F. Bruneval, L. Martin-Samos, J. Phys. Chem. B 122, 2023 (2018).
    Optical Properties of Saturated and Unsaturated Carbonyl Defects in Polyethylene
  64. V. Ziaei, T. Bredow, Phys. Rev. B 96, 195115 (2017).
    Simple many-body based screening mixing ansatz for improvement of GW/Bethe-Salpeter equation excitation energies of molecular systems
  65. E. Coccia, D. Varsano, L. Guidoni, J. Chem. Theory Comput. 13, 4357 (2017).
    Theoretical S1 ← S0 Absorption Energies of the Anionic Forms of Oxyluciferin by Variational Monte Carlo and Many-Body Green's Function Theory
  66. L. Hung, F. Bruneval, K. Baishya, S. Öğüt, J. Chem. Theory Comput. 13, 2135 (2017).
    Benchmarking the GW Approximation and Bethe-Salpeter Equation for Groups IB and IIB Atoms and Monoxides
  67. T. Rangel, S.M. Hamed, F. Bruneval, J.B. Neaton, J. Chem. Phys. 146, 194108 (2017).
    An assessment of the low-lying excitation energies and triplet instabilities of organic molecules with an ab initio Bethe-Salpeter equation approach
  68. V. Ziaei, T. Bredow, Chem. Phys. Chem. 18, 579 (2017).
    Large-scale quantum many-body perturbation on spin and charge separation in excited states of synthesized donor/acceptor hybrid PBI-macrocycle complex
  69. F. Bruneval, J. Chem. Phys. 145, 234110 (2016).
    Optimized virtual orbital subspace for faster GW calculations in localized basis
  70. V. Ziaei, T. Bredow, J. Chem. Phys. 145, 174305 (2016).
    GW-BSE approach on S1 vertical transition energy of large charge transfer compounds: A performance assessment
  71. V. Ziaei, T. Bredow, J. Chem. Phys. 145, 064508 (2016).
    Red and blue shift of liquid water's excited states: A many body perturbation study
  72. F. Bruneval, T. Rangel, S.M. Hamed, M. Shao, C. Yang, J.B. Neaton, Comput. Phys. Commun. 208, 149 (2016).
    MOLGW 1: many-body perturbation theory software for atoms, molecules, and clusters
  73. T. Rangel, S.M. Hamed, F. Bruneval, J.B. Neaton, J. Chem. Theory Comput. 12, 2834 (2016).
    Evaluating the GW approximation with CCSD(T) for charged excitations across the oligoacenes
  74. X. Blase, P. Boulanger, F. Bruneval, M. Fernandez-Serra, I. Duchemin, J. Chem. Phys. 144, 034109 (2016).
    GW and Bethe-Salpeter study of small water clusters
  75. F. Bruneval, S. M. Hamed, J. B. Neaton, J. Chem. Phys. 142, 244101 (2015).
    A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules
  76. M. P. Ljungberg, P. Koval, F. Ferrari, D. Foerster, D. Sànchez-Portal, Phys. Rev. B 92, 075422 (2015).
    Cubic-scaling iterative solution of the Bethe-Salpeter equation for finite systems
  77. P. Koval, D. Foerster, D. Sànchez-Portal, Phys. Rev. B 89, 155417 (2014).
    Fully self-consistent GW and quasiparticle self-consistent GW for molecules
  78. F. Bruneval, M. A. L. Marques, J. Chem. Theory Comput. 9, 324 (2013).
    Benchmarking the Starting Points of the GW Approximation for Molecules
  79. F. Bruneval, J. Chem. Phys. 136, 194107 (2012).
    Ionization energy of atoms obtained from GW self-energy or from random phase approximation total energies