Skip to content

Articles

List of articles reporting calculations performed with MOLGW

Please do not hesitate to report your work to us.

  1. Y. Byun, J. Yoo, International Journal of Quantum Chemistry 124, e27345 (2024).
    GPU acceleration of many-body perturbation theory methods in MOLGW with OpenACC
  2. M. Rodríguez-Mayorga, P. Besalú-Sala, Á. J. Pérez-Jiménez, J. C. Sancho-García, Journal of Computational Chemistry (2024).
    Application to nonlinear optical properties of the RSX-QIDH double-hybrid range-separated functional
  3. F. Bruneval, A. Förster, arXiv [physics.comp-ph] (2024).
    Fully dynamic G3W2 self-energy for finite systems: Formulas and benchmark
  4. A. Mandal, T. Goswami, S. Chowdhury, J. Phys. Chem. A 127, 9885 (2023).
    A Computational Exploration of Exohedrally Transition Metal Doped Si94– Superatom Based Magnetic MSi9M′ Clusters (M, M′ = Sc(II) to Cu(II))
  5. R. Tomar, L. Bernasconi, D. Fazzi, T. Bredow, J. Phys. Chem. A 127, 9661 (2023).
    Theoretical Study on the Optoelectronic Properties of Merocyanine-Dyes
  6. A. M. Valencia, D. Bischof, S. Anhäuser, M. Zeplichal, A. Terfort, G. Witte, C. Cocchi, Electronic Structure 5, 033003 (2023).
    Excitons in organic materials: revisiting old concepts with new insights
  7. A. H. Denawi, F. Bruneval, M. Torrent, M. Rodríguez-Mayorga, Phys. Rev. B 108, 125107 (2023).
    GW density matrix for estimation of self-consistent GW total energies in solids
  8. M. Mansouri, P. Koval, S. Sharifzadeh, D. Sánchez-Portal, J. Phys. Chem. C 127, 16668 (2023).
    Molecular Doping in the Organic Semiconductor Diindenoperylene: Insights from Many-Body Perturbation Theory
  9. F. Goto, A. Calloni, I. Majumdar, R. Yivlialin, C. Filoni, C. Hogan, M. Palummo, A. O. Biroli, M. Finazzi, L. Duò, F. Ciccacci, G. Bussetti, Inorg. Chim. Acta 556, 121612 (2023).
    Exploring the range of applicability of anisotropic optical detection in axially coordinated supramolecular structures
  10. I. Kuusik, M. Kook, R. Pärna, V. Kisand, Chem. Phys. 572, 111971 (2023).
    Charge transfer and electronic relaxation effects in the photoemission of EMIM-DCA ionic liquid vapor
  11. Z. Hashemi, M. Knodt, M. R. G. Marques, L. Leppert, Electron. Struct. 5, 024006 (2023).
    Mapping charge-transfer excitations in Bacteriochlorophyll dimers from first principles
  12. C. Cocchi, M. Guerrini, J. Krumland, N. Trung Nguyen, A. M. Valencia, J. Phys. Mat. 6, 012001 (2023).
    Modeling the electronic structure of organic materials: a solid-state physicist’s perspective
  13. E. Molteni, G. Mattioli, D. Sangalli, Nuovo. Cimento C 45 C, 175 (2022).
    Ab initio circular dichroism with the yambo code: Beyond the independent particle approximation
  14. C. A. McKeon, S. M. Hamed, F. Bruneval, J. B. Neaton, J. Chem. Phys. 157, 074103 (2022).
    An optimally tuned range-separated hybrid starting point for ab initio GW plus Bethe–Salpeter equation calculations of molecules
  15. M. Marsili, S. Corni, J. Phys. Chem. C 126, 8768 (2022).
    Electronic Dynamics of a Molecular System Coupled to a Plasmonic Nanoparticle Combining the Polarizable Continuum Model and Many-Body Perturbation Theory
  16. N. Rußegger, A. M. Valencia, L. Merten, M. Zwadlo, G. Duva, L. Pithan, A. Gerlach, A. Hinderhofer, C. Cocchi, F. Schreiber, J. Phys. Chem. C 126, 4188 (2022).
    Molecular Charge Transfer Effects on Perylene Diimide Acceptor and Dinaphthothienothiophene Donor Systems
  17. X. Qi, F. Bruneval, I. Maliyov, Phys. Rev. Lett. 128, 043401 (2022).
    Ab Initio Prediction of a Negative Barkas Coefficient for Slow Protons and Antiprotons in LiF
  18. F. Bruneval, N. Dattani, M. J. van Setten, Front. Chem. 9, 749779 (2021).
    The GW Miracle in Many-Body Perturbation Theory for the Ionization Potential of Molecules
  19. D. Günder, A. M. Valencia, M. Guerrini, T. Breuer, C. Cocchi, G. Witte, J. Phys. Chem. Lett. 12, 9899 (2021).
    Polarization Resolved Optical Excitation of Charge-Transfer Excitons in PEN:PFP Cocrystalline Films: Limits of Nonperiodic Modeling
  20. M. Mansouri, D. Casanova, P. Koval, D. Sánchez-Portal, New J. Phys. 23, 093027 (2021).
    GW approximation for open-shell molecules: a first-principles study
  21. P. Grobas Illobre, M. Marsili, S. Corni, M. Stener, D. Toffoli, E. Coccia, J. Chem. Theory Comput. 17, 6314 (2021).
    Time-Resolved Excited-State Analysis of Molecular Electron Dynamics by TDDFT and Bethe–Salpeter Equation Formalisms
  22. M. Guerrini, A. M. Valencia, C. Cocchi, J. Phys. Chem. C 125, 20821 (2021).
    Long-Range Order Promotes Charge-Transfer Excitations in Donor/Acceptor Co-Crystals
  23. Z. C. Wong, L. Ungur, Phys. Chem. Chem. Phys. 23, 19054 (2021).
    Exploring vibronic coupling in the benzene radical cation and anion with different levels of the GW approximation
  24. C. P. Theurer, A. M. Valencia, J. Hausch, C. Zeiser, V. Sivanesan, C. Cocchi, P. Tegeder, and K. Broch, J. Phys. Chem. C 125, 6313 (2021).
    Photophysics of Charge Transfer Complexes Formed by Tetracene and Strong Acceptors
  25. A. M. Valencia, O. Shargaieva, R. Schier, E. Unger, C. Cocchi, J. Phys. Chem. Lett. 12, 2299 (2021).
    Optical Fingerprints of Polynuclear Complexes in Lead Halide Perovskite Precursor Solutions
  26. F. Bruneval, M. Rodriguez-Mayorga, P. Rinke, M. Dvorak, J. Chem. Theory Comput. 17, 2126 (2021).
    Improved One-Shot Total Energies from the Linearized GW Density Matrix
  27. Z. Hashemi, L. Leppert, J. Phys. Chem. A 125, 2163 (2021).
    Assessment of the Ab Initio Bethe–Salpeter Equation Approach for the Low-Lying Excitation Energies of Bacteriochlorophylls and Chlorophylls
  28. M. Rezaei, S. Öğüt, J. Chem. Phys. 154, 094307 (2021).
    Photoelectron spectra of early 3d-transition metal dioxide molecular anions from GW calculations
  29. C. Liu, J. Kloppenburg, Y. Yao, X. Ren, H. Appel, Y. Kanai, V. Blum J. Chem. Phys. 152, 044105 (2020).
    All-electron ab initio Bethe-Salpeter equation approach to neutral excitations in molecules with numeric atom-centered orbitals
  30. M. Guerrini, E. Delgado Aznar, C. Cocchi, J. Phys. Chem. C 124, 27801 (2020).
    Electronic and Optical Properties of Protonated Triazine Derivatives
  31. C. Ovando-Vázquez, D. Salgado-Blanco, F. López-Urías, ChemistrySelect 8, 8616 (2020).
    Nanoscale Properties of the Methylation in GpC Dinucleotide Systems
  32. J. Krumland, A. M. Valencia, S. Pittalis, C. A. Rozzi, C. Cocchi, J. Chem. Phys. 153, 054106 (2020).
    Understanding real-time time-dependent density-functional theory simulations of ultrafast laser-induced dynamics in organic molecules
  33. R. Schier, A. M. Valencia, C. Cocchi, J. Phys. Chem. C 124, 14363 (2020).
    Microscopic Insight into the Electronic Structure of BCF-Doped Oligothiophenes from Ab Initio Many-Body Theory
  34. F. Bruneval, I. Maliyov, C. Lapointe, and M.-C. Marinica, J. Chem. Theory Comput. 16, 4399 (2020).
    Extrapolating Unconverged GW Energies up to the Complete Basis Set Limit with Linear Regression
  35. K. T. Williams et al., Phys. Rev. X 10, 011041 (2020).
    Direct Comparison of Many-Body Methods for Realistic Electronic Hamiltonians
  36. M. Cazzaniga, F. Cargnoni, M. Penconi, A. Bossi, D. Ceresoli, J. Chem. Theory Comput. 16, 1188 (2020).
    Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes
  37. P.-F. Loos, B. Pradines, A. Scemama, E. Giner, J. Toulouse, J. Chem. Theory Comput. 16, 1018 (2020).
    Density-Based Basis-Set Incompleteness Correction for GW Methods
  38. A. M. Valencia, M. Guerrini, C. Cocchi, Phys. Chem. Chem. Phys. 22, 3527 (2020).
    Ab initio modelling of local interfaces in doped organic semiconductors
  39. I. Maliyov, J.-P. Crocombette, F. Bruneval, Phys. Rev. B 101, 035136 (2020).
    Quantitative electronic stopping power from localized basis set
  40. Y.-M. Byun, S. Öğüt, J. Chem. Phys. 151, 134305 (2019).
    Practical GW scheme for electronic structure of 3d-transition-metal monoxide anions: ScO, TiO, CuO, and ZnO
  41. P. Koval, M. P. Ljungberg, M. Müller, D. Sànchez-Portal, J. Chem. Theory Comput. 15, 4564 (2019).
    Toward Efficient GW Calculations Using Numerical Atomic Orbitals: Benchmarking and Application to Molecular Dynamics Simulations
  42. F. Bruneval, J. Chem. Theory Comput. 15, 4069 (2019).
    Assessment of the linearized GW density matrix for molecules
  43. M. Guerrini, A. Calzolari, D. Varsano, S. Corni, J. Chem. Theory Comput. 15, 3197 (2019).
    Quantifying the Plasmonic Character of Optical Excitations in a Molecular J-Aggregate
  44. A. M. Valencia, C. Cocchi, J. Phys. Chem. C 123, 9617 (2019).
    Electronic and Optical Properties of Oligothiophene-F4TCNQ Charge-Transfer Complexes: The Role of Donor Conjugation Length
  45. M. Guerrini, C. Cocchi, A. Calzolari, D. Varsano, S. Corni, J. Phys. Chem. C 123, 6831 (2019).
    Interplay between Intra- and Intermolecular Charge Transfer in the Optical Excitations of J-Aggregates
  46. S. Refaely-Abramson , Z.-F. Liu , F. Bruneval, J. B. Neaton, J. Phys. Chem. C 123, 6379 (2019).
    First-Principles Approach to the Conductance of Covalently Bound Molecular Junctions
  47. F. Bruneval, Phys. Rev. B 99, 041118(R) (2019).
    Improved density matrices for accurate molecular ionization potentials
  48. M. Véril, P. Romaniello, J. A. Berger, P.-F. Loos, J. Chem. Theory Comput. 14, 5220 (2018).
    Unphysical Discontinuities in GW Methods
  49. I. Maliyov, J.-P. Crocombette, F. Bruneval, Eur. Phys. J. B 91, 172 (2018).
    Electronic stopping power from time-dependent density-functional theory in Gaussian basis
  50. V. Ziaei, T. Bredow, J. Phys. Condens. Matter 30, 395501 (2018).
    Screening mixing GW/Bethe-Salpeter approach for triplet states of organic molecules
  51. B. Shi, S. Weissman, F. Bruneval, L. Kronik, S. Öğüt, J. Chem. Phys. 149, 064306 (2018).
    Photoelectron spectra of copper oxide cluster anions from first principles methods
  52. G. Roma, F. Bruneval, L. Martin-Samos, J. Phys. Chem. B 122, 2023 (2018).
    Optical Properties of Saturated and Unsaturated Carbonyl Defects in Polyethylene
  53. V. Ziaei, T. Bredow, Phys. Rev. B 96, 195115 (2017).
    Simple many-body based screening mixing ansatz for improvement of GW/Bethe-Salpeter equation excitation energies of molecular systems
  54. E. Coccia, D. Varsano, L. Guidoni, J. Chem. Theory Comput. 13, 4357 (2017).
    Theoretical S1 ← S0 Absorption Energies of the Anionic Forms of Oxyluciferin by Variational Monte Carlo and Many-Body Green's Function Theory
  55. L. Hung, F. Bruneval, K. Baishya, S. Öğüt, J. Chem. Theory Comput. 13, 2135 (2017).
    Benchmarking the GW Approximation and Bethe-Salpeter Equation for Groups IB and IIB Atoms and Monoxides
  56. T. Rangel, S.M. Hamed, F. Bruneval, J.B. Neaton, J. Chem. Phys. 146, 194108 (2017).
    An assessment of the low-lying excitation energies and triplet instabilities of organic molecules with an ab initio Bethe-Salpeter equation approach
  57. V. Ziaei, T. Bredow, Chem. Phys. Chem. 18, 579 (2017).
    Large-scale quantum many-body perturbation on spin and charge separation in excited states of synthesized donor/acceptor hybrid PBI-macrocycle complex
  58. F. Bruneval, J. Chem. Phys. 145, 234110 (2016).
    Optimized virtual orbital subspace for faster GW calculations in localized basis
  59. V. Ziaei, T. Bredow, J. Chem. Phys. 145, 174305 (2016).
    GW-BSE approach on S1 vertical transition energy of large charge transfer compounds: A performance assessment
  60. V. Ziaei, T. Bredow, J. Chem. Phys. 145, 064508 (2016).
    Red and blue shift of liquid water's excited states: A many body perturbation study
  61. F. Bruneval, T. Rangel, S.M. Hamed, M. Shao, C. Yang, J.B. Neaton, Comput. Phys. Commun. 208, 149 (2016).
    MOLGW 1: many-body perturbation theory software for atoms, molecules, and clusters
  62. T. Rangel, S.M. Hamed, F. Bruneval, J.B. Neaton, J. Chem. Theory Comput. 12, 2834 (2016).
    Evaluating the GW approximation with CCSD(T) for charged excitations across the oligoacenes
  63. X. Blase, P. Boulanger, F. Bruneval, M. Fernandez-Serra, I. Duchemin, J. Chem. Phys. 144, 034109 (2016).
    GW and Bethe-Salpeter study of small water clusters
  64. F. Bruneval, S. M. Hamed, J. B. Neaton, J. Chem. Phys. 142, 244101 (2015).
    A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules
  65. M. P. Ljungberg, P. Koval, F. Ferrari, D. Foerster, D. Sànchez-Portal, Phys. Rev. B 92, 075422 (2015).
    Cubic-scaling iterative solution of the Bethe-Salpeter equation for finite systems
  66. P. Koval, D. Foerster, D. Sànchez-Portal, Phys. Rev. B 89, 155417 (2014).
    Fully self-consistent GW and quasiparticle self-consistent GW for molecules
  67. F. Bruneval, M. A. L. Marques, J. Chem. Theory Comput. 9, 324 (2013).
    Benchmarking the Starting Points of the GW Approximation for Molecules
  68. F. Bruneval, J. Chem. Phys. 136, 194107 (2012).
    Ionization energy of atoms obtained from GW self-energy or from random phase approximation total energies