Skip to content

Articles

List of articles reporting calculations with MOLGW

Do not hesitate to report your work to us.

  1. E. Molteni, G. Mattioli, D. Sangalli, Nuovo. Cimento C 45 C, 175 (2022).
    Ab initio circular dichroism with the yambo code: Beyond the independent particle approximation
  2. C. A. McKeon, S. M. Hamed, F. Bruneval, J. B. Neaton, J. Chem. Phys. 157, 074103 (2022).
    An optimally tuned range-separated hybrid starting point for ab initio GW plus Bethe–Salpeter equation calculations of molecules
  3. M. Marsili, S. Corni, J. Phys. Chem. C 126, 8768 (2022).
    Electronic Dynamics of a Molecular System Coupled to a Plasmonic Nanoparticle Combining the Polarizable Continuum Model and Many-Body Perturbation Theory
  4. N. Rußegger, A. M. Valencia, L. Merten, M. Zwadlo, G. Duva, L. Pithan, A. Gerlach, A. Hinderhofer, C. Cocchi, F. Schreiber, J. Phys. Chem. C 126, 4188 (2022).
    Molecular Charge Transfer Effects on Perylene Diimide Acceptor and Dinaphthothienothiophene Donor Systems
  5. X. Qi, F. Bruneval, I. Maliyov, Phys. Rev. Lett. 128, 043401 (2022).
    Ab Initio Prediction of a Negative Barkas Coefficient for Slow Protons and Antiprotons in LiF
  6. F. Bruneval, N. Dattani, M. J. van Setten, Front. Chem. 9, 749779 (2021).
    The GW Miracle in Many-Body Perturbation Theory for the Ionization Potential of Molecules
  7. D. Günder, A. M. Valencia, M. Guerrini, T. Breuer, C. Cocchi, G. Witte, J. Phys. Chem. Lett. 12, 9899 (2021).
    Polarization Resolved Optical Excitation of Charge-Transfer Excitons in PEN:PFP Cocrystalline Films: Limits of Nonperiodic Modeling
  8. M. Mansouri, D. Casanova, P. Koval, D. Sánchez-Portal, New J. Phys. 23, 093027 (2021).
    GW approximation for open-shell molecules: a first-principles study
  9. P. Grobas Illobre, M. Marsili, S. Corni, M. Stener, D. Toffoli, E. Coccia, J. Chem. Theory Comput. 17, 6314 (2021).
    Time-Resolved Excited-State Analysis of Molecular Electron Dynamics by TDDFT and Bethe–Salpeter Equation Formalisms
  10. M. Guerrini, A. M. Valencia, C. Cocchi, J. Phys. Chem. C 125, 20821 (2021).
    Long-Range Order Promotes Charge-Transfer Excitations in Donor/Acceptor Co-Crystals
  11. Z. C. Wong, L. Ungur, Phys. Chem. Chem. Phys. 23, 19054 (2021).
    Exploring vibronic coupling in the benzene radical cation and anion with different levels of the GW approximation
  12. C. P. Theurer, A. M. Valencia, J. Hausch, C. Zeiser, V. Sivanesan, C. Cocchi, P. Tegeder, and K. Broch, J. Phys. Chem. C 125, 6313 (2021).
    Photophysics of Charge Transfer Complexes Formed by Tetracene and Strong Acceptors
  13. A. M. Valencia, O. Shargaieva, R. Schier, E. Unger, C. Cocchi, J. Phys. Chem. Lett. 12, 2299 (2021).
    Optical Fingerprints of Polynuclear Complexes in Lead Halide Perovskite Precursor Solutions
  14. F. Bruneval, M. Rodriguez-Mayorga, P. Rinke, M. Dvorak, J. Chem. Theory Comput. 17, 2126 (2021).
    Improved One-Shot Total Energies from the Linearized GW Density Matrix
  15. Z. Hashemi, L. Leppert, J. Phys. Chem. A 125, 2163 (2021).
    Assessment of the Ab Initio Bethe–Salpeter Equation Approach for the Low-Lying Excitation Energies of Bacteriochlorophylls and Chlorophylls
  16. M. Rezaei, S. Öğüt, J. Chem. Phys. 154, 094307 (2021).
    Photoelectron spectra of early 3d-transition metal dioxide molecular anions from GW calculations
  17. C. Liu, J. Kloppenburg, Y. Yao, X. Ren, H. Appel, Y. Kanai, V. Blum J. Chem. Phys. 152, 044105 (2020).
    All-electron ab initio Bethe-Salpeter equation approach to neutral excitations in molecules with numeric atom-centered orbitals
  18. M. Guerrini, E. Delgado Aznar, C. Cocchi, J. Phys. Chem. C 124, 27801 (2020).
    Electronic and Optical Properties of Protonated Triazine Derivatives
  19. C. Ovando-Vázquez, D. Salgado-Blanco, F. López-Urías, ChemistrySelect 8, 8616 (2020).
    Nanoscale Properties of the Methylation in GpC Dinucleotide Systems
  20. J. Krumland, A. M. Valencia, S. Pittalis, C. A. Rozzi, C. Cocchi, J. Chem. Phys. 153, 054106 (2020).
    Understanding real-time time-dependent density-functional theory simulations of ultrafast laser-induced dynamics in organic molecules
  21. R. Schier, A. M. Valencia, C. Cocchi, J. Phys. Chem. C 124, 14363 (2020).
    Microscopic Insight into the Electronic Structure of BCF-Doped Oligothiophenes from Ab Initio Many-Body Theory
  22. F. Bruneval, I. Maliyov, C. Lapointe, and M.-C. Marinica, J. Chem. Theory Comput. 16, 4399 (2020).
    Extrapolating Unconverged GW Energies up to the Complete Basis Set Limit with Linear Regression
  23. K. T. Williams et al., Phys. Rev. X 10, 011041 (2020).
    Direct Comparison of Many-Body Methods for Realistic Electronic Hamiltonians
  24. M. Cazzaniga, F. Cargnoni, M. Penconi, A. Bossi, D. Ceresoli, J. Chem. Theory Comput. 16, 1188 (2020).
    Ab Initio Many-Body Perturbation Theory Calculations of the Electronic and Optical Properties of Cyclometalated Ir(III) Complexes
  25. P.-F. Loos, B. Pradines, A. Scemama, E. Giner, J. Toulouse, J. Chem. Theory Comput. 16, 1018 (2020).
    Density-Based Basis-Set Incompleteness Correction for GW Methods
  26. A. M. Valencia, M. Guerrini, C. Cocchi, Phys. Chem. Chem. Phys. 22, 3527 (2020).
    Ab initio modelling of local interfaces in doped organic semiconductors
  27. I. Maliyov, J.-P. Crocombette, F. Bruneval, Phys. Rev. B 101, 035136 (2020).
    Quantitative electronic stopping power from localized basis set
  28. Y.-M. Byun, S. Öğüt, J. Chem. Phys. 151, 134305 (2019).
    Practical GW scheme for electronic structure of 3d-transition-metal monoxide anions: ScO, TiO, CuO, and ZnO
  29. P. Koval, M. P. Ljungberg, M. Müller, D. Sànchez-Portal, J. Chem. Theory Comput. 15, 4564 (2019).
    Toward Efficient GW Calculations Using Numerical Atomic Orbitals: Benchmarking and Application to Molecular Dynamics Simulations
  30. F. Bruneval, J. Chem. Theory Comput. 15, 4069 (2019).
    Assessment of the linearized GW density matrix for molecules
  31. M. Guerrini, A. Calzolari, D. Varsano, S. Corni, J. Chem. Theory Comput. 15, 3197 (2019).
    Quantifying the Plasmonic Character of Optical Excitations in a Molecular J-Aggregate
  32. A. M. Valencia, C. Cocchi, J. Phys. Chem. C 123, 9617 (2019).
    Electronic and Optical Properties of Oligothiophene-F4TCNQ Charge-Transfer Complexes: The Role of Donor Conjugation Length
  33. M. Guerrini, C. Cocchi, A. Calzolari, D. Varsano, S. Corni, J. Phys. Chem. C 123, 6831 (2019).
    Interplay between Intra- and Intermolecular Charge Transfer in the Optical Excitations of J-Aggregates
  34. S. Refaely-Abramson , Z.-F. Liu , F. Bruneval, J. B. Neaton, J. Phys. Chem. C 123, 6379 (2019).
    First-Principles Approach to the Conductance of Covalently Bound Molecular Junctions
  35. F. Bruneval, Phys. Rev. B 99, 041118(R) (2019).
    Improved density matrices for accurate molecular ionization potentials
  36. M. Véril, P. Romaniello, J. A. Berger, P.-F. Loos, J. Chem. Theory Comput. 14, 5220 (2018).
    Unphysical Discontinuities in GW Methods
  37. I. Maliyov, J.-P. Crocombette, F. Bruneval, Eur. Phys. J. B 91, 172 (2018).
    Electronic stopping power from time-dependent density-functional theory in Gaussian basis
  38. V. Ziaei, T. Bredow, J. Phys. Condens. Matter 30, 395501 (2018).
    Screening mixing GW/Bethe-Salpeter approach for triplet states of organic molecules
  39. B. Shi, S. Weissman, F. Bruneval, L. Kronik, S. Öğüt, J. Chem. Phys. 149, 064306 (2018).
    Photoelectron spectra of copper oxide cluster anions from first principles methods
  40. G. Roma, F. Bruneval, L. Martin-Samos, J. Phys. Chem. B 122, 2023 (2018).
    Optical Properties of Saturated and Unsaturated Carbonyl Defects in Polyethylene
  41. V. Ziaei, T. Bredow, Phys. Rev. B 96, 195115 (2017).
    Simple many-body based screening mixing ansatz for improvement of GW/Bethe-Salpeter equation excitation energies of molecular systems
  42. E. Coccia, D. Varsano, L. Guidoni, J. Chem. Theory Comput. 13, 4357 (2017).
    Theoretical S1 ← S0 Absorption Energies of the Anionic Forms of Oxyluciferin by Variational Monte Carlo and Many-Body Green's Function Theory
  43. L. Hung, F. Bruneval, K. Baishya, S. Öğüt, J. Chem. Theory Comput. 13, 2135 (2017).
    Benchmarking the GW Approximation and Bethe-Salpeter Equation for Groups IB and IIB Atoms and Monoxides
  44. T. Rangel, S.M. Hamed, F. Bruneval, J.B. Neaton, J. Chem. Phys. 146, 194108 (2017).
    An assessment of the low-lying excitation energies and triplet instabilities of organic molecules with an ab initio Bethe-Salpeter equation approach
  45. V. Ziaei, T. Bredow, Chem. Phys. Chem. 18, 579 (2017).
    Large-scale quantum many-body perturbation on spin and charge separation in excited states of synthesized donor/acceptor hybrid PBI-macrocycle complex
  46. F. Bruneval, J. Chem. Phys. 145, 234110 (2016).
    Optimized virtual orbital subspace for faster GW calculations in localized basis
  47. V. Ziaei, T. Bredow, J. Chem. Phys. 145, 174305 (2016).
    GW-BSE approach on S1 vertical transition energy of large charge transfer compounds: A performance assessment
  48. V. Ziaei, T. Bredow, J. Chem. Phys. 145, 064508 (2016).
    Red and blue shift of liquid water's excited states: A many body perturbation study
  49. F. Bruneval, T. Rangel, S.M. Hamed, M. Shao, C. Yang, J.B. Neaton, Comput. Phys. Commun. 208, 149 (2016).
    MOLGW 1: many-body perturbation theory software for atoms, molecules, and clusters
  50. T. Rangel, S.M. Hamed, F. Bruneval, J.B. Neaton, J. Chem. Theory Comput. 12, 2834 (2016).
    Evaluating the GW approximation with CCSD(T) for charged excitations across the oligoacenes
  51. X. Blase, P. Boulanger, F. Bruneval, M. Fernandez-Serra, I. Duchemin, J. Chem. Phys. 144, 034109 (2016).
    GW and Bethe-Salpeter study of small water clusters
  52. F. Bruneval, S. M. Hamed, J. B. Neaton, J. Chem. Phys. 142, 244101 (2015).
    A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules
  53. M. P. Ljungberg, P. Koval, F. Ferrari, D. Foerster, D. Sànchez-Portal, Phys. Rev. B 92, 075422 (2015).
    Cubic-scaling iterative solution of the Bethe-Salpeter equation for finite systems
  54. P. Koval, D. Foerster, D. Sànchez-Portal, Phys. Rev. B 89, 155417 (2014).
    Fully self-consistent GW and quasiparticle self-consistent GW for molecules
  55. F. Bruneval, M. A. L. Marques, J. Chem. Theory Comput. 9, 324 (2013).
    Benchmarking the Starting Points of the GW Approximation for Molecules
  56. F. Bruneval, J. Chem. Phys. 136, 194107 (2012).
    Ionization energy of atoms obtained from GW self-energy or from random phase approximation total energies